IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19091-3.html
   My bibliography  Save this article

Observation of phonon trapping in the continuum with topological charges

Author

Listed:
  • Hao Tong

    (University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign)

  • Shengyan Liu

    (University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign)

  • Mengdi Zhao

    (University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign)

  • Kejie Fang

    (University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign)

Abstract

Phonon trapping has an immense impact in many areas of science and technology, from the antennas of interferometric gravitational wave detectors to chip-scale quantum micro- and nano-mechanical oscillators. It usually relies on the mechanical suspension—an approach, while isolating selected vibrational modes, leads to serious drawbacks for interrogation of the trapped phonons, including limited heat capacity and excess noises via measurements. To circumvent these constraints, we realize a paradigm of phonon trapping using mechanical bound states in the continuum (BICs) with topological features and conducted an in-depth characterization of the mechanical losses both at room and cryogenic temperatures. Our findings of mechanical BICs combining the microwave frequency and macroscopic size unveil a unique platform for realizing mechanical oscillators in both classical and quantum regimes. The paradigm of mechanical BICs might lead to unprecedented sensing modalities for applications such as rare-event searches and the exploration of the foundations of quantum mechanics in unreached parameter spaces.

Suggested Citation

  • Hao Tong & Shengyan Liu & Mengdi Zhao & Kejie Fang, 2020. "Observation of phonon trapping in the continuum with topological charges," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19091-3
    DOI: 10.1038/s41467-020-19091-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19091-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19091-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengyan Liu & Hao Tong & Kejie Fang, 2022. "Optomechanical crystal with bound states in the continuum," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Chloe F. Doiron & Igal Brener & Alexander Cerjan, 2022. "Realizing symmetry-guaranteed pairs of bound states in the continuum in metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19091-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.