IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18907-6.html
   My bibliography  Save this article

A versatile soluble siglec scaffold for sensitive and quantitative detection of glycan ligands

Author

Listed:
  • Emily Rodrigues

    (University of Alberta)

  • Jaesoo Jung

    (University of Alberta)

  • Heajin Park

    (University of Alberta)

  • Caleb Loo

    (University of Alberta)

  • Sepideh Soukhtehzari

    (University of British Columbia)

  • Elena N. Kitova

    (University of Alberta)

  • Fahima Mozaneh

    (University of Alberta)

  • Gour Daskhan

    (University of Alberta)

  • Edward N. Schmidt

    (University of Alberta)

  • Vivian Aghanya

    (University of Alberta)

  • Susmita Sarkar

    (University of Alberta)

  • Laura Streith

    (University of Alberta)

  • Chris D. Laurent

    (University of Alberta)

  • Linh Nguyen

    (University of Alberta)

  • Jean-Philippe Julien

    (University of Toronto
    The Hospital for Sick Children Research Institute)

  • Lori J. West

    (University of Alberta
    University of Alberta
    University of Alberta)

  • Karla C. Williams

    (University of British Columbia)

  • John S. Klassen

    (University of Alberta)

  • Matthew S. Macauley

    (University of Alberta
    University of Alberta)

Abstract

Sialic acid-binding immunoglobulin-type lectins (Siglecs) are immunomodulatory receptors that are regulated by their glycan ligands. The connections between Siglecs and human disease motivate improved methods to detect Siglec ligands. Here, we describe a new versatile set of Siglec-Fc proteins for glycan ligand detection. Enhanced sensitivity and selectivity are enabled through multimerization and avoiding Fc receptors, respectively. Using these Siglec-Fc proteins, Siglec ligands are systematically profiled on healthy and cancerous cells and tissues, revealing many unique patterns. Additional features enable the production of small, homogenous Siglec fragments and development of a quantitative ligand-binding mass spectrometry assay. Using this assay, the ligand specificities of several Siglecs are clarified. For CD33 (Siglec-3), we demonstrate that it recognizes both α2-3 and α2-6 sialosides in solution and on cells, which has implications for its link to Alzheimer’s disease susceptibility. These soluble Siglecs reveal the abundance of their glycan ligands on host cells as self-associated molecular patterns.

Suggested Citation

  • Emily Rodrigues & Jaesoo Jung & Heajin Park & Caleb Loo & Sepideh Soukhtehzari & Elena N. Kitova & Fahima Mozaneh & Gour Daskhan & Edward N. Schmidt & Vivian Aghanya & Susmita Sarkar & Laura Streith &, 2020. "A versatile soluble siglec scaffold for sensitive and quantitative detection of glycan ligands," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18907-6
    DOI: 10.1038/s41467-020-18907-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18907-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18907-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Pia Lenza & Leire Egia-Mendikute & Asier Antoñana-Vildosola & Cátia O. Soares & Helena Coelho & Francisco Corzana & Alexandre Bosch & Prodhi Manisha & Jon Imanol Quintana & Iker Oyenarte & Luca , 2023. "Structural insights into Siglec-15 reveal glycosylation dependency for its interaction with T cells through integrin CD11b," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Chih-Lan Lin & Mirat Sojitra & Eric J. Carpenter & Ellen S. Hayhoe & Susmita Sarkar & Elizabeth A. Volker & Chao Wang & Duong T. Bui & Loretta Yang & John S. Klassen & Peng Wu & Matthew S. Macauley & , 2023. "Chemoenzymatic synthesis of genetically-encoded multivalent liquid N-glycan arrays," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Edward N. Schmidt & Dimitra Lamprinaki & Kelli A. McCord & Maju Joe & Mirat Sojitra & Ayk Waldow & Jasmine Nguyen & John Monyror & Elena N. Kitova & Fahima Mozaneh & Xue Yan Guo & Jaesoo Jung & Jhon R, 2023. "Siglec-6 mediates the uptake of extracellular vesicles through a noncanonical glycolipid binding pocket," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18907-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.