IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18588-1.html
   My bibliography  Save this article

Redox-triggered switching in three-dimensional covalent organic frameworks

Author

Listed:
  • Chao Gao

    (Wuhan University)

  • Jian Li

    (Peking University
    Stockholm University)

  • Sheng Yin

    (Wuhan University)

  • Junliang Sun

    (Peking University
    Stockholm University)

  • Cheng Wang

    (Wuhan University)

Abstract

The tuning of molecular switches in solid state toward stimuli-responsive materials has attracted more and more attention in recent years. Herein, we report a switchable three-dimensional covalent organic framework (3D COF), which can undergo a reversible transformation through a hydroquinone/quinone redox reaction while retaining the crystallinity and porosity. Our results clearly show that the switching process gradually happened through the COF framework, with an almost quantitative conversion yield. In addition, the redox-triggered transformation will form different functional groups on the pore surface and modify the shape of pore channel, which can result in tunable gas separation property. This study strongly demonstrates 3D COFs can provide robust platforms for efficient tuning of molecular switches in solid state. More importantly, switching of these moieties in 3D COFs can remarkably modify the internal pore environment, which will thus enable the resulting materials with interesting stimuli-responsive properties.

Suggested Citation

  • Chao Gao & Jian Li & Sheng Yin & Junliang Sun & Cheng Wang, 2020. "Redox-triggered switching in three-dimensional covalent organic frameworks," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18588-1
    DOI: 10.1038/s41467-020-18588-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18588-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18588-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yangyang Xu & Tu Sun & Tengwu Zeng & Xiangyu Zhang & Xuan Yao & Shan Liu & Zhaolin Shi & Wen Wen & Yingbo Zhao & Shan Jiang & Yanhang Ma & Yue-Biao Zhang, 2023. "Symmetry-breaking dynamics in a tautomeric 3D covalent organic framework," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Jian Li & Cong Lin & Tianqiong Ma & Junliang Sun, 2022. "Atomic-resolution structures from polycrystalline covalent organic frameworks with enhanced cryo-cRED," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18588-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.