IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18570-x.html
   My bibliography  Save this article

PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade

Author

Listed:
  • Qi Peng

    (Tsinghua University
    Tsinghua University)

  • Xiangyan Qiu

    (University of Texas Southwestern Medical Center)

  • Zihan Zhang

    (Tsinghua University)

  • Silin Zhang

    (Tsinghua University)

  • Yuanyuan Zhang

    (Tsinghua University)

  • Yong Liang

    (University of Texas Southwestern Medical Center)

  • Jingya Guo

    (Chinese Academy of Science Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences)

  • Hua Peng

    (Chinese Academy of Science Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences)

  • Mingyi Chen

    (University of Texas Southwestern Medical Center)

  • Yang-Xin Fu

    (University of Texas Southwestern Medical Center)

  • Haidong Tang

    (Tsinghua University)

Abstract

Immune checkpoint blockade therapies have shown clinical promise in a variety of cancers, but how tumor-infiltrating T cells are activated remains unclear. In this study, we explore the functions of PD-L1 on dendritic cells (DCs), which highly express PD-L1. We observe that PD-L1 on DC plays a critical role in limiting T cell responses. Type 1 conventional DCs are essential for PD-L1 blockade and they upregulate PD-L1 upon antigen uptake. Upregulation of PD-L1 on DC is mediated by type II interferon. While DCs are the major antigen presenting cells for cross-presenting tumor antigens to T cells, subsequent PD-L1 upregulation protects them from killing by cytotoxic T lymphocytes, yet dampens the antitumor responses. Blocking PD-L1 in established tumors promotes re-activation of tumor-infiltrating T cells for tumor control. Our study identifies a critical and dynamic role of PD-L1 on DC, which needs to be harnessed for better invigoration of antitumor immune responses.

Suggested Citation

  • Qi Peng & Xiangyan Qiu & Zihan Zhang & Silin Zhang & Yuanyuan Zhang & Yong Liang & Jingya Guo & Hua Peng & Mingyi Chen & Yang-Xin Fu & Haidong Tang, 2020. "PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18570-x
    DOI: 10.1038/s41467-020-18570-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18570-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18570-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colin Y. C. Lee & Bethany C. Kennedy & Nathan Richoz & Isaac Dean & Zewen K. Tuong & Fabrina Gaspal & Zhi Li & Claire Willis & Tetsuo Hasegawa & Sarah K. Whiteside & David A. Posner & Gianluca Carless, 2024. "Tumour-retained activated CCR7+ dendritic cells are heterogeneous and regulate local anti-tumour cytolytic activity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Lucía López & Luciano Gastón Morosi & Federica Terza & Pierre Bourdely & Giuseppe Rospo & Roberto Amadio & Giulia Maria Piperno & Valentina Russo & Camilla Volponi & Simone Vodret & Sonal Joshi & Fran, 2024. "Dendritic cell-targeted therapy expands CD8 T cell responses to bona-fide neoantigens in lung tumors," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Yuedong Guo & Qunqun Bao & Ping Hu & Jianlin Shi, 2023. "Nanomedicine-based co-delivery of a calcium channel inhibitor and a small molecule targeting CD47 for lung cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Songlei Zhou & Yukun Huang & Yu Chen & Yipu Liu & Laozhi Xie & Yang You & Shiqiang Tong & Jianpei Xu & Gan Jiang & Qingxiang Song & Ni Mei & Fenfen Ma & Xiaoling Gao & Hongzhuan Chen & Jun Chen, 2023. "Reprogramming systemic and local immune function to empower immunotherapy against glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. Mengxue Zhou & Jiaxin Wang & Jiaxing Pan & Hui Wang & Lujia Huang & Bo Hou & Yi Lai & Fengyang Wang & Qingxiang Guan & Feng Wang & Zhiai Xu & Haijun Yu, 2023. "Nanovesicles loaded with a TGF-β receptor 1 inhibitor overcome immune resistance to potentiate cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18570-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.