IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18521-6.html
   My bibliography  Save this article

Probing magnetism in atomically thin semiconducting PtSe2

Author

Listed:
  • Ahmet Avsar

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Cheol-Yeon Cheon

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Michele Pizzochero

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Mukesh Tripathi

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Alberto Ciarrocchi

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Oleg V. Yazyev

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Andras Kis

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL))

Abstract

Atomic-scale disorder in two-dimensional transition metal dichalcogenides is often accompanied by local magnetic moments, which can conceivably induce long-range magnetic ordering into intrinsically non-magnetic materials. Here, we demonstrate the signature of long-range magnetic orderings in defective mono- and bi-layer semiconducting PtSe2 by performing magnetoresistance measurements under both lateral and vertical measurement configurations. As the material is thinned down from bi- to mono-layer thickness, we observe a ferromagnetic-to-antiferromagnetic crossover, a behavior which is opposite to the one observed in the prototypical 2D magnet CrI3. Our first-principles calculations, supported by aberration-corrected transmission electron microscopy imaging of point defects, associate this transition to the interplay between the defect-induced magnetism and the interlayer interactions in PtSe2. Furthermore, we show that graphene can be effectively used to probe the magnetization of adjacent semiconducting PtSe2. Our findings in an ultimately scaled monolayer system lay the foundation for atom-by-atom engineering of magnetism in otherwise non-magnetic 2D materials.

Suggested Citation

  • Ahmet Avsar & Cheol-Yeon Cheon & Michele Pizzochero & Mukesh Tripathi & Alberto Ciarrocchi & Oleg V. Yazyev & Andras Kis, 2020. "Probing magnetism in atomically thin semiconducting PtSe2," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18521-6
    DOI: 10.1038/s41467-020-18521-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18521-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18521-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junhyeon Jo & Jung Hwa Kim & Choong H. Kim & Jaebyeong Lee & Daeseong Choe & Inseon Oh & Seunghyun Lee & Zonghoon Lee & Hosub Jin & Jung-Woo Yoo, 2022. "Defect-gradient-induced Rashba effect in van der Waals PtSe2 layers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Sihua Feng & Hengli Duan & Hao Tan & Fengchun Hu & Chaocheng Liu & Yao Wang & Zhi Li & Liang Cai & Yuyang Cao & Chao Wang & Zeming Qi & Li Song & Xuguang Liu & Zhihu Sun & Wensheng Yan, 2023. "Intrinsic room-temperature ferromagnetism in a two-dimensional semiconducting metal-organic framework," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18521-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.