IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18466-w.html
   My bibliography  Save this article

IL-33-ST2 axis regulates myeloid cell differentiation and activation enabling effective club cell regeneration

Author

Listed:
  • Rania Dagher

    (Inserm UMR1152—Physiopathologie et Epidémiologie des Maladies Respiratoires, Université Paris
    Faculté de Médecine, Université Paris
    Laboratoire d’Excellence (LabEx) INFLAMEX and Département Hospitalo-Universitaire (DHU) FIRE
    Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca)

  • Alan M. Copenhaver

    (Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca)

  • Valerie Besnard

    (Inserm UMR1152—Physiopathologie et Epidémiologie des Maladies Respiratoires, Université Paris
    Faculté de Médecine, Université Paris
    Laboratoire d’Excellence (LabEx) INFLAMEX and Département Hospitalo-Universitaire (DHU) FIRE)

  • Aaron Berlin

    (Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca)

  • Fatima Hamidi

    (Inserm UMR1152—Physiopathologie et Epidémiologie des Maladies Respiratoires, Université Paris
    Faculté de Médecine, Université Paris
    Laboratoire d’Excellence (LabEx) INFLAMEX and Département Hospitalo-Universitaire (DHU) FIRE)

  • Marielle Maret

    (Inserm UMR1152—Physiopathologie et Epidémiologie des Maladies Respiratoires, Université Paris
    Faculté de Médecine, Université Paris
    Laboratoire d’Excellence (LabEx) INFLAMEX and Département Hospitalo-Universitaire (DHU) FIRE)

  • Jingya Wang

    (Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca)

  • Xiaotao Qu

    (Data Sciences and AI, BioPharmaceuticals R&D, AstraZeneca)

  • Yashaswi Shrestha

    (Translational Medicine, Oncology R&D, AstraZeneca)

  • Jincheng Wu

    (Data Sciences and AI, BioPharmaceuticals R&D, AstraZeneca)

  • Gregory Gautier

    (Faculté de Médecine, Université Paris
    Laboratoire d’Excellence (LabEx) INFLAMEX and Département Hospitalo-Universitaire (DHU) FIRE
    Inserm UMR1149 - Centre de Recherche sur l’Inflammation, Université Paris)

  • Rajiv Raja

    (Translational Medicine, Oncology R&D, AstraZeneca)

  • Michel Aubier

    (Inserm UMR1152—Physiopathologie et Epidémiologie des Maladies Respiratoires, Université Paris
    Faculté de Médecine, Université Paris
    Laboratoire d’Excellence (LabEx) INFLAMEX and Département Hospitalo-Universitaire (DHU) FIRE)

  • Roland Kolbeck

    (Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca)

  • Alison A. Humbles

    (Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca)

  • Marina Pretolani

    (Inserm UMR1152—Physiopathologie et Epidémiologie des Maladies Respiratoires, Université Paris
    Faculté de Médecine, Université Paris
    Laboratoire d’Excellence (LabEx) INFLAMEX and Département Hospitalo-Universitaire (DHU) FIRE)

Abstract

Evidence points to an indispensable function of macrophages in tissue regeneration, yet the underlying molecular mechanisms remain elusive. Here we demonstrate a protective function for the IL-33-ST2 axis in bronchial epithelial repair, and implicate ST2 in myeloid cell differentiation. ST2 deficiency in mice leads to reduced lung myeloid cell infiltration, abnormal alternatively activated macrophage (AAM) function, and impaired epithelial repair post naphthalene-induced injury. Reconstitution of wild type (WT) AAMs to ST2-deficient mice completely restores bronchial re-epithelialization. Central to this mechanism is the direct effect of IL-33-ST2 signaling on monocyte/macrophage differentiation, self-renewal and repairing ability, as evidenced by the downregulation of key pathways regulating myeloid cell cycle, maturation and regenerative function of the epithelial niche in ST2−/− mice. Thus, the IL-33-ST2 axis controls epithelial niche regeneration by activating a large multi-cellular circuit, including monocyte differentiation into competent repairing AAMs, as well as group-2 innate lymphoid cell (ILC2)-mediated AAM activation.

Suggested Citation

  • Rania Dagher & Alan M. Copenhaver & Valerie Besnard & Aaron Berlin & Fatima Hamidi & Marielle Maret & Jingya Wang & Xiaotao Qu & Yashaswi Shrestha & Jincheng Wu & Gregory Gautier & Rajiv Raja & Michel, 2020. "IL-33-ST2 axis regulates myeloid cell differentiation and activation enabling effective club cell regeneration," Nature Communications, Nature, vol. 11(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18466-w
    DOI: 10.1038/s41467-020-18466-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18466-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18466-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Learta Pervizaj-Oruqaj & Balachandar Selvakumar & Maximiliano Ruben Ferrero & Monika Heiner & Christina Malainou & Rolf David Glaser & Jochen Wilhelm & Marek Bartkuhn & Astrid Weiss & Ioannis Alexopou, 2024. "Alveolar macrophage-expressed Plet1 is a driver of lung epithelial repair after viral pneumonia," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Anhao Liu & Mikihito Hayashi & Yujin Ohsugi & Sayaka Katagiri & Shizuo Akira & Takanori Iwata & Tomoki Nakashima, 2024. "The IL-33/ST2 axis is protective against acute inflammation during the course of periodontitis," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18466-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.