IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18436-2.html
   My bibliography  Save this article

Ignoring correlated activity causes a failure of retinal population codes

Author

Listed:
  • Kiersten Ruda

    (Duke University School of Medicine)

  • Joel Zylberberg

    (York University)

  • Greg D. Field

    (Duke University School of Medicine)

Abstract

From starlight to sunlight, adaptation alters retinal output, changing both the signal and noise among populations of retinal ganglion cells (RGCs). Here we determine how these light level-dependent changes impact decoding of retinal output, testing the importance of accounting for RGC noise correlations to optimally read out retinal activity. We find that at moonlight conditions, correlated noise is greater and assuming independent noise severely diminishes decoding performance. In fact, assuming independence among a local population of RGCs produces worse decoding than using a single RGC, demonstrating a failure of population codes when correlated noise is substantial and ignored. We generalize these results with a simple model to determine what conditions dictate this failure of population processing. This work elucidates the circumstances in which accounting for noise correlations is necessary to take advantage of population-level codes and shows that sensory adaptation can strongly impact decoding requirements on downstream brain areas.

Suggested Citation

  • Kiersten Ruda & Joel Zylberberg & Greg D. Field, 2020. "Ignoring correlated activity causes a failure of retinal population codes," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18436-2
    DOI: 10.1038/s41467-020-18436-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18436-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18436-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saad Idrees & Michael B. Manookin & Fred Rieke & Greg D. Field & Joel Zylberberg, 2024. "Biophysical neural adaptation mechanisms enable artificial neural networks to capture dynamic retinal computation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Eric G. Wu & Nora Brackbill & Colleen Rhoades & Alexandra Kling & Alex R. Gogliettino & Nishal P. Shah & Alexander Sher & Alan M. Litke & Eero P. Simoncelli & E. J. Chichilnisky, 2024. "Fixational eye movements enhance the precision of visual information transmitted by the primate retina," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18436-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.