IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18435-3.html
   My bibliography  Save this article

Phase of firing coding of learning variables across the fronto-striatal network during feature-based learning

Author

Listed:
  • Benjamin Voloh

    (Vanderbilt University)

  • Mariann Oemisch

    (Vanderbilt University)

  • Thilo Womelsdorf

    (Vanderbilt University)

Abstract

The prefrontal cortex and striatum form a recurrent network whose spiking activity encodes multiple types of learning-relevant information. This spike-encoded information is evident in average firing rates, but finer temporal coding might allow multiplexing and enhanced readout across the connected network. We tested this hypothesis in the fronto-striatal network of nonhuman primates during reversal learning of feature values. We found that populations of neurons encoding choice outcomes, outcome prediction errors, and outcome history in their firing rates also carry significant information in their phase-of-firing at a 10–25 Hz band-limited beta frequency at which they synchronize across lateral prefrontal cortex, anterior cingulate cortex and anterior striatum when outcomes were processed. The phase-of-firing code exceeds information that can be obtained from firing rates alone and is evident for inter-areal connections between anterior cingulate cortex, lateral prefrontal cortex and anterior striatum. For the majority of connections, the phase-of-firing information gain is maximal at phases of the beta cycle that were offset from the preferred spiking phase of neurons. Taken together, these findings document enhanced information of three important learning variables at specific phases of firing in the beta cycle at an inter-areally shared beta oscillation frequency during goal-directed behavior.

Suggested Citation

  • Benjamin Voloh & Mariann Oemisch & Thilo Womelsdorf, 2020. "Phase of firing coding of learning variables across the fronto-striatal network during feature-based learning," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18435-3
    DOI: 10.1038/s41467-020-18435-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18435-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18435-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18435-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.