IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18308-9.html
   My bibliography  Save this article

Swelling-strengthening hydrogels by embedding with deformable nanobarriers

Author

Listed:
  • Feng Wu

    (Shanghai Jiao Tong University)

  • Yan Pang

    (Shanghai Jiao Tong University)

  • Jinyao Liu

    (Shanghai Jiao Tong University)

Abstract

Biological tissues, such as muscle, can increase their mechanical strength after swelling due to the existence of many biological membrane barriers that can regulate the transmembrane transport of water molecules and ions. Oppositely, typical synthetic materials show a swelling-weakening behavior, which always suffers from a sharp decline in mechanical strength after swelling, because of the dilution of the network. Here, we describe a swelling-strengthening phenomenon of polymer materials achieved by a bioinspired strategy. Liposomal membrane nanobarriers are covalently embedded in a crosslinked network to regulate transmembrane transport. After swelling, the stretched network deforms the liposomes and subsequently initiates the transmembrane diffusion of the encapsulated molecules that can trigger the formation of a new network from the preloaded precursor. Thanks to the tough nature of the double-network structure, the swelling-strengthening phenomenon is achieved to polymer hydrogels successfully. Swelling-triggered self-strengthening enables the development of various dynamic materials.

Suggested Citation

  • Feng Wu & Yan Pang & Jinyao Liu, 2020. "Swelling-strengthening hydrogels by embedding with deformable nanobarriers," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18308-9
    DOI: 10.1038/s41467-020-18308-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18308-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18308-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shanming Hu & Yuhuang Fang & Chen Liang & Matti Turunen & Olli Ikkala & Hang Zhang, 2023. "Thermally trainable dual network hydrogels," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Feng Wu & Yusheng Ren & Wenyan Lv & Xiaobing Liu & Xinyue Wang & Chuhan Wang & Zhenping Cao & Jinyao Liu & Jie Wei & Yan Pang, 2024. "Generating dual structurally and functionally skin-mimicking hydrogels by crosslinking cell-membrane compartments," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18308-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.