IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18204-2.html
   My bibliography  Save this article

Repertoire-scale determination of class II MHC peptide binding via yeast display improves antigen prediction

Author

Listed:
  • C. Garrett Rappazzo

    (Koch Institute for Integrative Cancer Research
    Massachusetts Institute of Technology)

  • Brooke D. Huisman

    (Koch Institute for Integrative Cancer Research
    Massachusetts Institute of Technology)

  • Michael E. Birnbaum

    (Koch Institute for Integrative Cancer Research
    Massachusetts Institute of Technology
    MGH, and Harvard)

Abstract

CD4+ helper T cells contribute important functions to the immune response during pathogen infection and tumor formation by recognizing antigenic peptides presented by class II major histocompatibility complexes (MHC-II). While many computational algorithms for predicting peptide binding to MHC-II proteins have been reported, their performance varies greatly. Here we present a yeast-display-based platform that allows the identification of over an order of magnitude more unique MHC-II binders than comparable approaches. These peptides contain previously identified motifs, but also reveal new motifs that are validated by in vitro binding assays. Training of prediction algorithms with yeast-display library data improves the prediction of peptide-binding affinity and the identification of pathogen-associated and tumor-associated peptides. In summary, our yeast-display-based platform yields high-quality MHC-II-binding peptide datasets that can be used to improve the accuracy of MHC-II binding prediction algorithms, and potentially enhance our understanding of CD4+ T cell recognition.

Suggested Citation

  • C. Garrett Rappazzo & Brooke D. Huisman & Michael E. Birnbaum, 2020. "Repertoire-scale determination of class II MHC peptide binding via yeast display improves antigen prediction," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18204-2
    DOI: 10.1038/s41467-020-18204-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18204-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18204-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brooke D. Huisman & Ning Guan & Timo Rückert & Lee Garner & Nishant K. Singh & Andrew J. McMichael & Geraldine M. Gillespie & Chiara Romagnani & Michael E. Birnbaum, 2023. "High-throughput characterization of HLA-E-presented CD94/NKG2x ligands reveals peptides which modulate NK cell activation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18204-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.