IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18195-0.html
   My bibliography  Save this article

Stochastic resonance in MoS2 photodetector

Author

Listed:
  • Akhil Dodda

    (Pennsylvania State University)

  • Aaryan Oberoi

    (Pennsylvania State University)

  • Amritanand Sebastian

    (Pennsylvania State University)

  • Tanushree H. Choudhury

    (Pennsylvania State University)

  • Joan M. Redwing

    (Pennsylvania State University
    Pennsylvania State University
    Pennsylvania State University)

  • Saptarshi Das

    (Pennsylvania State University
    Pennsylvania State University
    Pennsylvania State University)

Abstract

In this article, we adopt a radical approach for next generation ultra-low-power sensor design by embracing the evolutionary success of animals with extraordinary sensory information processing capabilities that allow them to survive in extreme and resource constrained environments. Stochastic resonance (SR) is one of those astounding phenomena, where noise, which is considered detrimental for electronic circuits and communication systems, plays a constructive role in the detection of weak signals. Here, we show SR in a photodetector based on monolayer MoS2 for detecting ultra-low-intensity subthreshold optical signals from a distant light emitting diode (LED). We demonstrate that weak periodic LED signals, which are otherwise undetectable, can be detected by a MoS2 photodetector in the presence of a finite and optimum amount of white Gaussian noise at a frugal energy expenditure of few tens of nano-Joules. The concept of SR is generic in nature and can be extended beyond photodetector to any other sensors.

Suggested Citation

  • Akhil Dodda & Aaryan Oberoi & Amritanand Sebastian & Tanushree H. Choudhury & Joan M. Redwing & Saptarshi Das, 2020. "Stochastic resonance in MoS2 photodetector," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18195-0
    DOI: 10.1038/s41467-020-18195-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18195-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18195-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiao, Zijian & He, Yuanbiao & Liao, Changrong & Zhu, Ronghua, 2023. "Noise-boosted weak signal detection in fractional nonlinear systems enhanced by increasing potential-well width and its application to mechanical fault diagnosis," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Amritanand Sebastian & Rahul Pendurthi & Azimkhan Kozhakhmetov & Nicholas Trainor & Joshua A. Robinson & Joan M. Redwing & Saptarshi Das, 2022. "Two-dimensional materials-based probabilistic synapses and reconfigurable neurons for measuring inference uncertainty using Bayesian neural networks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Yikai Zheng & Harikrishnan Ravichandran & Thomas F. Schranghamer & Nicholas Trainor & Joan M. Redwing & Saptarshi Das, 2022. "Hardware implementation of Bayesian network based on two-dimensional memtransistors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Subir Ghosh & Andrew Pannone & Dipanjan Sen & Akshay Wali & Harikrishnan Ravichandran & Saptarshi Das, 2023. "An all 2D bio-inspired gustatory circuit for mimicking physiology and psychology of feeding behavior," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Akhil Dodda & Nicholas Trainor & Joan. M. Redwing & Saptarshi Das, 2022. "All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Muhtasim Ul Karim Sadaf & Najam U Sakib & Andrew Pannone & Harikrishnan Ravichandran & Saptarshi Das, 2023. "A bio-inspired visuotactile neuron for multisensory integration," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18195-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.