IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18103-6.html
   My bibliography  Save this article

Drop impact printing

Author

Listed:
  • Chandantaru Dey Modak

    (Centre for Nano Science and Engineering, Indian Institute of Science)

  • Arvind Kumar

    (Centre for Nano Science and Engineering, Indian Institute of Science
    Australian Institute of Bioengineering and Nanotechnology, The University of Queensland)

  • Abinash Tripathy

    (Centre for Nano Science and Engineering, Indian Institute of Science
    ETH Zurich)

  • Prosenjit Sen

    (Centre for Nano Science and Engineering, Indian Institute of Science)

Abstract

Hydrodynamic collapse of a central air-cavity during the recoil phase of droplet impact on a superhydrophobic sieve leads to satellite-free generation of a single droplet through the sieve. Two modes of cavity formation and droplet ejection have been observed and explained. The volume of the generated droplet scales with the pore size. Based on this phenomenon, we propose a drop-on-demand printing technique. Despite significant advancements in inkjet technology, enhancement in mass-loading and particle-size have been limited due to clogging of the printhead nozzle. By replacing the nozzle with a sieve, we demonstrate printing of nanoparticle suspension with 71% mass-loading. Comparatively large particles of 20 μm diameter are dispensed in droplets of ~80 μm diameter. Printing is performed for surface tension as low as 32 mNm−1 and viscosity as high as 33 mPa∙s. In comparison to existing techniques, this way of printing is widely accessible as it is significantly simple and economical.

Suggested Citation

  • Chandantaru Dey Modak & Arvind Kumar & Abinash Tripathy & Prosenjit Sen, 2020. "Drop impact printing," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18103-6
    DOI: 10.1038/s41467-020-18103-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18103-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18103-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rutvik Lathia & Satchit Nagpal & Chandantaru Dey Modak & Satyarthi Mishra & Deepak Sharma & Bheema Sankar Reddy & Pavan Nukala & Ramray Bhat & Prosenjit Sen, 2023. "Tunable encapsulation of sessile droplets with solid and liquid shells," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18103-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.