IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17991-y.html
   My bibliography  Save this article

T cell exhaustion and a failure in antigen presentation drive resistance to the graft-versus-leukemia effect

Author

Listed:
  • Meng Zhou

    (University of Pittsburgh School of Medicine)

  • Faruk Sacirbegovic

    (University of Pittsburgh School of Medicine)

  • Kai Zhao

    (University of Pittsburgh School of Medicine)

  • Sarah Rosenberger

    (University of Pittsburgh School of Medicine)

  • Warren D. Shlomchik

    (University of Pittsburgh School of Medicine
    University of Pittsburgh School of Medicine
    University of Pittsburgh School of Medicine
    University of Pittsburgh School of Medicine)

Abstract

In hematopoietic cell transplants, alloreactive T cells mediate the graft-versus-leukemia (GVL) effect. However, leukemia relapse accounts for nearly half of deaths. Understanding GVL failure requires a system in which GVL-inducing T cells can be tracked. We used such a model wherein GVL is exclusively mediated by T cells that recognize the minor histocompatibility antigen H60. Here we report that GVL fails due to insufficient H60 presentation and T cell exhaustion. Leukemia-derived H60 is inefficiently cross-presented whereas direct T cell recognition of leukemia cells intensifies exhaustion. The anti-H60 response is augmented by H60-vaccination, an agonist αCD40 antibody (FGK45), and leukemia apoptosis. T cell exhaustion is marked by inhibitory molecule upregulation and the development of TOX+ and CD39−TCF-1+ cells. PD-1 blockade diminishes exhaustion and improves GVL, while blockade of Tim-3, TIGIT or LAG3 is ineffective. Of all interventions, FGK45 administration at the time of transplant is the most effective at improving memory and naïve T cell anti-H60 responses and GVL. Our studies define important causes of GVL failure and suggest strategies to overcome them.

Suggested Citation

  • Meng Zhou & Faruk Sacirbegovic & Kai Zhao & Sarah Rosenberger & Warren D. Shlomchik, 2020. "T cell exhaustion and a failure in antigen presentation drive resistance to the graft-versus-leukemia effect," Nature Communications, Nature, vol. 11(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17991-y
    DOI: 10.1038/s41467-020-17991-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17991-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17991-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Solhwi Lee & Kunhee Lee & Hyeonjin Bae & Kyungmin Lee & Junghwa Lee & Junhui Ma & Ye Ji Lee & Bo Ryeong Lee & Woong-Yang Park & Se Jin Im, 2023. "Defining a TCF1-expressing progenitor allogeneic CD8+ T cell subset in acute graft-versus-host disease," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17991-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.