IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17900-3.html
   My bibliography  Save this article

A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data

Author

Listed:
  • Alexis Vandenbon

    (Kyoto University
    Kyoto University)

  • Diego Diez

    (Osaka University)

Abstract

A common analysis of single-cell sequencing data includes clustering of cells and identifying differentially expressed genes (DEGs). How cell clusters are defined has important consequences for downstream analyses and the interpretation of results, but is often not straightforward. To address this difficulty, we present singleCellHaystack, a method that enables the prediction of DEGs without relying on explicit clustering of cells. Our method uses Kullback–Leibler divergence to find genes that are expressed in subsets of cells that are non-randomly positioned in a multidimensional space. Comparisons with existing DEG prediction approaches on artificial datasets show that singleCellHaystack has higher accuracy. We illustrate the usage of singleCellHaystack through applications on 136 real transcriptome datasets and a spatial transcriptomics dataset. We demonstrate that our method is a fast and accurate approach for DEG prediction in single-cell data. singleCellHaystack is implemented as an R package and is available from CRAN and GitHub.

Suggested Citation

  • Alexis Vandenbon & Diego Diez, 2020. "A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17900-3
    DOI: 10.1038/s41467-020-17900-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17900-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17900-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hivert, Benjamin & Agniel, Denis & Thiébaut, Rodolphe & Hejblum, Boris P., 2024. "Post-clustering difference testing: Valid inference and practical considerations with applications to ecological and biological data," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).
    2. Tzuhua D. Lin & Nimrod D. Rubinstein & Nicole L. Fong & Megan Smith & Wendy Craft & Baby Martin-McNulty & Rebecca Perry & Martha A. Delaney & Margaret A. Roy & Rochelle Buffenstein, 2024. "Evolution of T cells in the cancer-resistant naked mole-rat," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17900-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.