IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17879-x.html
   My bibliography  Save this article

Quantitative tRNA-sequencing uncovers metazoan tissue-specific tRNA regulation

Author

Listed:
  • Otis Pinkard

    (Case Western Reserve University
    Johns Hopkins School of Medicine)

  • Sean McFarland

    (Tevard Biosciences, LabCentral)

  • Thomas Sweet

    (Case Western Reserve University)

  • Jeff Coller

    (Johns Hopkins School of Medicine)

Abstract

Transfer RNAs (tRNA) are quintessential in deciphering the genetic code; disseminating nucleic acid triplets into correct amino acid identity. While this decoding function is clear, an emerging theme is that tRNA abundance and functionality can powerfully impact protein production rate, folding, activity, and messenger RNA stability. Importantly, however, the expression pattern of tRNAs is obliquely known. Here we present Quantitative Mature tRNA sequencing (QuantM-tRNA seq), a technique to monitor tRNA abundance and sequence variants secondary to RNA modifications. With QuantM-tRNA seq, we assess the tRNA transcriptome in mammalian tissues. We observe dramatic distinctions in isodecoder expression and known tRNA modifications between tissues. Remarkably, despite dramatic changes in tRNA isodecoder gene expression, the overall anticodon pool of each tRNA family is similar across tissues. These findings suggest that while anticodon pools appear to be buffered via an unknown mechanism, underlying transcriptomic and epitranscriptomic differences suggest a more complex tRNA regulatory landscape.

Suggested Citation

  • Otis Pinkard & Sean McFarland & Thomas Sweet & Jeff Coller, 2020. "Quantitative tRNA-sequencing uncovers metazoan tissue-specific tRNA regulation," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17879-x
    DOI: 10.1038/s41467-020-17879-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17879-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17879-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikhil Bharti & Leonardo Santos & Marcos Davyt & Stine Behrmann & Marie Eichholtz & Alejandro Jimenez-Sanchez & Jeong S. Hong & Andras Rab & Eric J. Sorscher & Suki Albers & Zoya Ignatova, 2024. "Translation velocity determines the efficacy of engineered suppressor tRNAs on pathogenic nonsense mutations," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17879-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.