IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17798-x.html
   My bibliography  Save this article

Antibody-secreting cell destiny emerges during the initial stages of B-cell activation

Author

Listed:
  • Christopher D. Scharer

    (Emory University School of Medicine)

  • Dillon G. Patterson

    (Emory University School of Medicine)

  • Tian Mi

    (Emory University School of Medicine)

  • Madeline J. Price

    (Emory University School of Medicine)

  • Sakeenah L. Hicks

    (Emory University School of Medicine)

  • Jeremy M. Boss

    (Emory University School of Medicine)

Abstract

Upon stimulation, B cells assume heterogeneous cell fates, with only a fraction differentiating into antibody-secreting cells (ASC). Here we investigate B cell fate programming and heterogeneity during ASC differentiation using T cell-independent models. We find that maximal ASC induction requires at least eight cell divisions in vivo, with BLIMP-1 being required for differentiation at division eight. Single cell RNA-sequencing of activated B cells and construction of differentiation trajectories reveal an early cell fate bifurcation. The ASC-destined branch requires induction of IRF4, MYC-target genes, and oxidative phosphorylation, with the loss of CD62L expression serving as a potential early marker of ASC fate commitment. Meanwhile, the non-ASC branch expresses an inflammatory signature, and maintains B cell fate programming. Finally, ASC can be further subseted based on their differential responses to ER-stress, indicating multiple development branch points. Our data thus define the cell division kinetics of B cell differentiation in vivo, and identify the molecular trajectories of B cell fate and ASC formation.

Suggested Citation

  • Christopher D. Scharer & Dillon G. Patterson & Tian Mi & Madeline J. Price & Sakeenah L. Hicks & Jeremy M. Boss, 2020. "Antibody-secreting cell destiny emerges during the initial stages of B-cell activation," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17798-x
    DOI: 10.1038/s41467-020-17798-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17798-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17798-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rene Yu-Hong Cheng & Joseph de Rutte & Cade Ellis K. Ito & Andee R. Ott & Lucie Bosler & Wei-Ying Kuo & Jesse Liang & Brian E. Hall & David J. Rawlings & Dino Di Carlo & Richard G. James, 2023. "SEC-seq: association of molecular signatures with antibody secretion in thousands of single human plasma cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17798-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.