IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17684-6.html
   My bibliography  Save this article

as-Indaceno[3,2,1,8,7,6-ghijklm]terrylene as a near-infrared absorbing C70-fragment

Author

Listed:
  • Yuki Tanaka

    (Nagoya University)

  • Norihito Fukui

    (Nagoya University)

  • Hiroshi Shinokubo

    (Nagoya University)

Abstract

Carbon and hydrogen are fundamental components of organic molecules and a fascinating plethora of functions can be generated using these two elements. Yet, realizing attractive electronic structures only by using carbon and hydrogen remains challenging. Herein, we report the synthesis and properties of the C70 fragment as-indaceno[3,2,1,8,7,6-ghijklm]terrylene, which exhibits near-infrared (NIR) absorption (up to ca. 1300 nm), even though this molecule consists of only 34 carbon and 14 hydrogen atoms. A remarkably small highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) gap is confirmed by electrochemical measurement and theoretical calculations. Furthermore, as-indacenoterrylene is stable despite the absence of peripheral substituents, which contrasts with the cases of other NIR-absorbing hydrocarbons such as diradicaloids and antiaromatic molecules. The results of this study thus offer fundamental insights into the design of hydrocarbons with a small band gap.

Suggested Citation

  • Yuki Tanaka & Norihito Fukui & Hiroshi Shinokubo, 2020. "as-Indaceno[3,2,1,8,7,6-ghijklm]terrylene as a near-infrared absorbing C70-fragment," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17684-6
    DOI: 10.1038/s41467-020-17684-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17684-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17684-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yixun Sun & Xin Wang & Bo Yang & Muhua Chen & Ziyi Guo & Yiting Wang & Ji Li & Mingyu Xu & Yunjie Zhang & Huaming Sun & Jingshuang Dang & Juan Fan & Jing Li & Junfa Wei, 2023. "Trichalcogenasupersumanenes and its concave-convex supramolecular assembly with fullerenes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Masahiro Hayakawa & Naoyuki Sunayama & Shu I. Takagi & Yu Matsuo & Asuka Tamaki & Shigehiro Yamaguchi & Shu Seki & Aiko Fukazawa, 2023. "Flattened 1D fragments of fullerene C60 that exhibit robustness toward multi-electron reduction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17684-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.