IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17593-8.html
   My bibliography  Save this article

Higher-order quantum spin Hall effect in a photonic crystal

Author

Listed:
  • Biye Xie

    (Nanjing University
    Nanjing University)

  • Guangxu Su

    (Nanjing University
    Nanjing University)

  • Hong-Fei Wang

    (Nanjing University
    Nanjing University)

  • Feng Liu

    (Kwansei Gakuin University)

  • Lumang Hu

    (Nanjing University
    Nanjing University)

  • Si-Yuan Yu

    (Nanjing University
    Nanjing University)

  • Peng Zhan

    (Nanjing University
    Nanjing University)

  • Ming-Hui Lu

    (Nanjing University
    Nanjing University
    Jiangsu Key Laboratory of Artificial Functional Materials)

  • Zhenlin Wang

    (Nanjing University
    Nanjing University)

  • Yan-Feng Chen

    (Nanjing University
    Nanjing University)

Abstract

The quantum spin Hall effect lays the foundation for the topologically protected manipulation of waves, but is restricted to one-dimensional-lower boundaries of systems and hence limits the diversity and integration of topological photonic devices. Recently, the conventional bulk-boundary correspondence of band topology has been extended to higher-order cases that enable explorations of topological states with codimensions larger than one such as hinge and corner states. Here, we demonstrate a higher-order quantum spin Hall effect in a two-dimensional photonic crystal. Owing to the non-trivial higher-order topology and the pseudospin-pseudospin coupling, we observe a directional localization of photons at corners with opposite pseudospin polarizations through pseudospin-momentum-locked edge waves, resembling the quantum spin Hall effect in a higher-order manner. Our work inspires an unprecedented route to transport and trap spinful waves, supporting potential applications in topological photonic devices such as spinful topological lasers and chiral quantum emitters.

Suggested Citation

  • Biye Xie & Guangxu Su & Hong-Fei Wang & Feng Liu & Lumang Hu & Si-Yuan Yu & Peng Zhan & Ming-Hui Lu & Zhenlin Wang & Yan-Feng Chen, 2020. "Higher-order quantum spin Hall effect in a photonic crystal," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17593-8
    DOI: 10.1038/s41467-020-17593-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17593-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17593-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao-Chen Sun & Hao Chen & Hua-Shan Lai & Chu-Hao Xia & Cheng He & Yan-Feng Chen, 2023. "Ideal acoustic quantum spin Hall phase in a multi-topology platform," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Liu, Xianglian & Li, Xiaoqiong & Li, Kaizhou & Zhou, Jie & Shi, Yuan & Chen, Jingdong, 2023. "Coexistence of Fano and electromagnetically induced transparency resonance line shapes in photonic topological insulators," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Anton Vakulenko & Svetlana Kiriushechkina & Daria Smirnova & Sriram Guddala & Filipp Komissarenko & Andrea Alù & Monica Allen & Jeffery Allen & Alexander B. Khanikaev, 2023. "Adiabatic topological photonic interfaces," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17593-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.