IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17268-4.html
   My bibliography  Save this article

The structures of two archaeal type IV pili illuminate evolutionary relationships

Author

Listed:
  • Fengbin Wang

    (University of Virginia)

  • Diana P. Baquero

    (Archaeal Virology Unit, Department of Microbiology Institut Pasteur
    Sorbonne Universités, Collège Doctoral)

  • Zhangli Su

    (University of Virginia)

  • Leticia C. Beltran

    (University of Virginia)

  • David Prangishvili

    (Archaeal Virology Unit, Department of Microbiology Institut Pasteur
    Ivane Javakhishvili Tbilisi State University)

  • Mart Krupovic

    (Archaeal Virology Unit, Department of Microbiology Institut Pasteur)

  • Edward H. Egelman

    (University of Virginia)

Abstract

We have determined the cryo-electron microscopic (cryo-EM) structures of two archaeal type IV pili (T4P), from Pyrobaculum arsenaticum and Saccharolobus solfataricus, at 3.8 Å and 3.4 Å resolution, respectively. This triples the number of high resolution archaeal T4P structures, and allows us to pinpoint the evolutionary divergence of bacterial T4P, archaeal T4P and archaeal flagellar filaments. We suggest that extensive glycosylation previously observed in T4P of Sulfolobus islandicus is a response to an acidic environment, as at even higher temperatures in a neutral environment much less glycosylation is present for Pyrobaculum than for Sulfolobus and Saccharolobus pili. Consequently, the Pyrobaculum filaments do not display the remarkable stability of the Sulfolobus filaments in vitro. We identify the Saccharolobus and Pyrobaculum T4P as host receptors recognized by rudivirus SSRV1 and tristromavirus PFV2, respectively. Our results illuminate the evolutionary relationships among bacterial and archaeal T4P filaments and provide insights into archaeal virus-host interactions.

Suggested Citation

  • Fengbin Wang & Diana P. Baquero & Zhangli Su & Leticia C. Beltran & David Prangishvili & Mart Krupovic & Edward H. Egelman, 2020. "The structures of two archaeal type IV pili illuminate evolutionary relationships," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17268-4
    DOI: 10.1038/s41467-020-17268-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17268-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17268-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lavinia Gambelli & Michail N. Isupov & Rebecca Conners & Mathew McLaren & Annett Bellack & Vicki Gold & Reinhard Rachel & Bertram Daum, 2022. "An archaellum filament composed of two alternating subunits," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Junfeng Liu & Gunnar N. Eastep & Virginija Cvirkaite-Krupovic & Shane T. Rich-New & Mark A. B. Kreutzberger & Edward H. Egelman & Mart Krupovic & Fengbin Wang, 2024. "Two distinct archaeal type IV pili structures formed by proteins with identical sequence," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Matthew C. Gaines & Shamphavi Sivabalasarma & Michail N. Isupov & Risat Ul Haque & Mathew McLaren & Cyril Hanus & Vicki A. M. Gold & Sonja-Verena Albers & Bertram Daum, 2024. "CryoEM reveals the structure of an archaeal pilus involved in twitching motility," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Matthew C. Gaines & Michail N. Isupov & Shamphavi Sivabalasarma & Risat Ul Haque & Mathew McLaren & Clara L. Mollat & Patrick Tripp & Alexander Neuhaus & Vicki A. M. Gold & Sonja-Verena Albers & Bertr, 2022. "Electron cryo-microscopy reveals the structure of the archaeal thread filament," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17268-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.