IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17102-x.html
   My bibliography  Save this article

Uncovering mutation-specific morphogenic phenotypes and paracrine-mediated vessel dysfunction in a biomimetic vascularized mammary duct platform

Author

Listed:
  • Matthew L. Kutys

    (Boston University
    Harvard University
    University of California San Francisco)

  • William J. Polacheck

    (Boston University
    Harvard University
    University of North Carolina)

  • Michaela K. Welch

    (Boston University)

  • Keith A. Gagnon

    (Boston University)

  • Thijs Koorman

    (Harvard Medical School
    Massachusetts General Hospital, Harvard Medical School)

  • Sudong Kim

    (Boston University
    Harvard University)

  • Linqing Li

    (Boston University
    Harvard University)

  • Andrea I. McClatchey

    (Harvard Medical School
    Massachusetts General Hospital, Harvard Medical School)

  • Christopher S. Chen

    (Boston University
    Harvard University)

Abstract

The mammary gland is a highly vascularized tissue capable of expansion and regression during development and disease. To enable mechanistic insight into the coordinated morphogenic crosstalk between the epithelium and vasculature, we introduce a 3D microfluidic platform that juxtaposes a human mammary duct in proximity to a perfused endothelial vessel. Both compartments recapitulate stable architectural features of native tissue and the ability to undergo distinct forms of branching morphogenesis. Modeling HER2/ERBB2 amplification or activating PIK3CA(H1047R) mutation each produces ductal changes observed in invasive progression, yet with striking morphogenic and behavioral differences. Interestingly, PI3KαH1047R ducts also elicit increased permeability and structural disorganization of the endothelium, and we identify the distinct secretion of IL-6 as the paracrine cause of PI3KαH1047R-associated vascular dysfunction. These results demonstrate the functionality of a model system that facilitates the dissection of 3D morphogenic behaviors and bidirectional signaling between mammary epithelium and endothelium during homeostasis and pathogenesis.

Suggested Citation

  • Matthew L. Kutys & William J. Polacheck & Michaela K. Welch & Keith A. Gagnon & Thijs Koorman & Sudong Kim & Linqing Li & Andrea I. McClatchey & Christopher S. Chen, 2020. "Uncovering mutation-specific morphogenic phenotypes and paracrine-mediated vessel dysfunction in a biomimetic vascularized mammary duct platform," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17102-x
    DOI: 10.1038/s41467-020-17102-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17102-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17102-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Indranil Paul & Dante Bolzan & Ahmed Youssef & Keith A. Gagnon & Heather Hook & Gopal Karemore & Michael U. J. Oliphant & Weiwei Lin & Qian Liu & Sadhna Phanse & Carl White & Dzmitry Padhorny & Sergei, 2023. "Parallelized multidimensional analytic framework applied to mammary epithelial cells uncovers regulatory principles in EMT," Nature Communications, Nature, vol. 14(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17102-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.