IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17062-2.html
   My bibliography  Save this article

Astrocytic Ca2+ signaling is reduced during sleep and is involved in the regulation of slow wave sleep

Author

Listed:
  • Laura Bojarskaite

    (Institute of Basic Medical Sciences, University of Oslo)

  • Daniel M. Bjørnstad

    (Institute of Basic Medical Sciences, University of Oslo)

  • Klas H. Pettersen

    (Institute of Basic Medical Sciences, University of Oslo)

  • Céline Cunen

    (Faculty of Mathematics and Natural Sciences, University of Oslo)

  • Gudmund Horn Hermansen

    (Faculty of Mathematics and Natural Sciences, University of Oslo)

  • Knut Sindre Åbjørsbråten

    (Institute of Basic Medical Sciences, University of Oslo)

  • Anna R. Chambers

    (Institute of Basic Medical Sciences, University of Oslo)

  • Rolf Sprengel

    (Institute for Anatomy and Cell Biology, Heidelberg University)

  • Koen Vervaeke

    (Institute of Basic Medical Sciences, University of Oslo)

  • Wannan Tang

    (Institute of Basic Medical Sciences, University of Oslo
    Norwegian University of Science and Technology)

  • Rune Enger

    (Institute of Basic Medical Sciences, University of Oslo
    Institute of Basic Medical Sciences, University of Oslo
    Oslo University Hospital, Rikshospitalet)

  • Erlend A. Nagelhus

    (Institute of Basic Medical Sciences, University of Oslo
    Oslo University Hospital, Rikshospitalet)

Abstract

Astrocytic Ca2+ signaling has been intensively studied in health and disease but has not been quantified during natural sleep. Here, we employ an activity-based algorithm to assess astrocytic Ca2+ signals in the neocortex of awake and naturally sleeping mice while monitoring neuronal Ca2+ activity, brain rhythms and behavior. We show that astrocytic Ca2+ signals exhibit distinct features across the sleep-wake cycle and are reduced during sleep compared to wakefulness. Moreover, an increase in astrocytic Ca2+ signaling precedes transitions from slow wave sleep to wakefulness, with a peak upon awakening exceeding the levels during whisking and locomotion. Finally, genetic ablation of an important astrocytic Ca2+ signaling pathway impairs slow wave sleep and results in an increased number of microarousals, abnormal brain rhythms, and an increased frequency of slow wave sleep state transitions and sleep spindles. Our findings demonstrate an essential role for astrocytic Ca2+ signaling in regulating slow wave sleep.

Suggested Citation

  • Laura Bojarskaite & Daniel M. Bjørnstad & Klas H. Pettersen & Céline Cunen & Gudmund Horn Hermansen & Knut Sindre Åbjørsbråten & Anna R. Chambers & Rolf Sprengel & Koen Vervaeke & Wannan Tang & Rune E, 2020. "Astrocytic Ca2+ signaling is reduced during sleep and is involved in the regulation of slow wave sleep," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17062-2
    DOI: 10.1038/s41467-020-17062-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17062-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17062-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fushun Wang & Wei Wang & Simeng Gu & Dan Qi & Nathan A. Smith & Weiguo Peng & Wei Dong & Jiajin Yuan & Binbin Zhao & Ying Mao & Peng Cao & Qing Richard Lu & Lee A. Shapiro & S. Stephen Yi & Erxi Wu & , 2023. "Distinct astrocytic modulatory roles in sensory transmission during sleep, wakefulness, and arousal states in freely moving mice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Shinnosuke Nomura & Shin-Ichiro Terada & Teppei Ebina & Masato Uemura & Yoshito Masamizu & Kenichi Ohki & Masanori Matsuzaki, 2024. "ARViS: a bleed-free multi-site automated injection robot for accurate, fast, and dense delivery of virus to mouse and marmoset cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    3. Yung-Tian A. Gau & Eric T. Hsu & Richard J. Cha & Rebecca W. Pak & Loren L. Looger & Jin U. Kang & Dwight E. Bergles, 2024. "Multicore fiber optic imaging reveals that astrocyte calcium activity in the mouse cerebral cortex is modulated by internal motivational state," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    4. Laura Bojarskaite & Alexandra Vallet & Daniel M. Bjørnstad & Kristin M. Gullestad Binder & Céline Cunen & Kjell Heuser & Miroslav Kuchta & Kent-Andre Mardal & Rune Enger, 2023. "Sleep cycle-dependent vascular dynamics in male mice and the predicted effects on perivascular cerebrospinal fluid flow and solute transport," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17062-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.