Author
Listed:
- Daniel L. Kimmel
(Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University
Columbia University)
- Gamaleldin F. Elsayed
(Google Research, Brain Team)
- John P. Cunningham
(Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University
Columbia University)
- William T. Newsome
(Stanford University)
Abstract
Value-based decision-making requires different variables—including offer value, choice, expected outcome, and recent history—at different times in the decision process. Orbitofrontal cortex (OFC) is implicated in value-based decision-making, but it is unclear how downstream circuits read out complex OFC responses into separate representations of the relevant variables to support distinct functions at specific times. We recorded from single OFC neurons while macaque monkeys made cost-benefit decisions. Using a novel analysis, we find separable neural dimensions that selectively represent the value, choice, and expected reward of the present and previous offers. The representations are generally stable during periods of behavioral relevance, then transition abruptly at key task events and between trials. Applying new statistical methods, we show that the sensitivity, specificity and stability of the representations are greater than expected from the population’s low-level features—dimensionality and temporal smoothness—alone. The separability and stability suggest a mechanism—linear summation over static synaptic weights—by which downstream circuits can select for specific variables at specific times.
Suggested Citation
Daniel L. Kimmel & Gamaleldin F. Elsayed & John P. Cunningham & William T. Newsome, 2020.
"Value and choice as separable and stable representations in orbitofrontal cortex,"
Nature Communications, Nature, vol. 11(1), pages 1-19, December.
Handle:
RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17058-y
DOI: 10.1038/s41467-020-17058-y
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17058-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.