Author
Listed:
- Zhang Jiang
(Advanced Photon Source, Argonne National Laboratory)
- Joseph W. Strzalka
(Advanced Photon Source, Argonne National Laboratory)
- Donald A. Walko
(Advanced Photon Source, Argonne National Laboratory)
- Jin Wang
(Advanced Photon Source, Argonne National Laboratory)
Abstract
Controlled synthesis of nanostructure ultrathin films is critical for applications in nanoelectronics, photonics, and energy generation and storage. The paucity of structural probes that are sensitive to nanometer-thick films and also capable of in-operando conditions with high spatiotemporal resolutions limits the understanding of morphology and dynamics in ultrathin films. Similar to X-ray fluorescence holography for crystals, where holograms are formed through the interference between the reference and the object waves, we demonstrated that an ultrathin film, being an X-ray waveguide, can also generate fluorescence holograms as a result of the establishment of X-ray standing waves. Coupled with model-independent reconstruction algorithms based on rigorous dynamical scattering theories, the thin-film-based X-ray waveguide fluorescence holography becomes a unique in situ and time-resolved imaging probe capable of elucidating the real-time nanostructure kinetics with unprecedented resolutions. Combined with chemical sensitive spectroscopic analysis, the reconstruction can yield element-specific morphology of embedding nanostructures in ultrathin films.
Suggested Citation
Zhang Jiang & Joseph W. Strzalka & Donald A. Walko & Jin Wang, 2020.
"Reconstruction of evolving nanostructures in ultrathin films with X-ray waveguide fluorescence holography,"
Nature Communications, Nature, vol. 11(1), pages 1-10, December.
Handle:
RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16980-5
DOI: 10.1038/s41467-020-16980-5
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16980-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.