IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16510-3.html
   My bibliography  Save this article

Ambient weathering of magnesium oxide for CO2 removal from air

Author

Listed:
  • Noah McQueen

    (Worcester Polytechnic Institute)

  • Peter Kelemen

    (Columbia University)

  • Greg Dipple

    (University of British Columbia)

  • Phil Renforth

    (Heriot-Watt University)

  • Jennifer Wilcox

    (Worcester Polytechnic Institute)

Abstract

To avoid dangerous climate change, new technologies must remove billions of tonnes of CO2 from the atmosphere every year by mid-century. Here we detail a land-based enhanced weathering cycle utilizing magnesite (MgCO3) feedstock to repeatedly capture CO2 from the atmosphere. In this process, MgCO3 is calcined, producing caustic magnesia (MgO) and high-purity CO2. This MgO is spread over land to carbonate for a year by reacting with atmospheric CO2. The carbonate minerals are then recollected and re-calcined. The reproduced MgO is spread over land to carbonate again. We show this process could cost approximately $46–159 tCO2−1 net removed from the atmosphere, considering grid and solar electricity without post-processing costs. This technology may achieve lower costs than projections for more extensively engineered Direct Air Capture methods. It has the scalable potential to remove at least 2–3 GtCO2 year−1, and may make a meaningful contribution to mitigating climate change.

Suggested Citation

  • Noah McQueen & Peter Kelemen & Greg Dipple & Phil Renforth & Jennifer Wilcox, 2020. "Ambient weathering of magnesium oxide for CO2 removal from air," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16510-3
    DOI: 10.1038/s41467-020-16510-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16510-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16510-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Chen & Zhang, Xinqi & Su, Tingyu & Zhang, Yiheng & Wang, Liwei & Zhu, Xuancan, 2023. "Modification schemes of efficient sorbents for trace CO2 capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Jia-Huan Du & Lu Chen & Bing Zhang & Kuizhi Chen & Meng Wang & Yang Wang & Ivan Hung & Zhehong Gan & Xin-Ping Wu & Xue-Qing Gong & Luming Peng, 2022. "Identification of CO2 adsorption sites on MgO nanosheets by solid-state nuclear magnetic resonance spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    3. Anita Punia, 2021. "Carbon dioxide sequestration by mines: implications for climate change," Climatic Change, Springer, vol. 165(1), pages 1-17, March.
    4. Ortiz, C. & García-Luna, S. & Carro, A. & Chacartegui, R. & Pérez-Maqueda, L., 2023. "Negative emissions power plant based on flexible calcium-looping process integrated with renewables and methane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16510-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.