IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16493-1.html
   My bibliography  Save this article

Mantle data imply a decline of oxidizable volcanic gases could have triggered the Great Oxidation

Author

Listed:
  • Shintaro Kadoya

    (University of Washington)

  • David C. Catling

    (University of Washington)

  • Robert W. Nicklas

    (Scripps Institution of Oceanography)

  • Igor S. Puchtel

    (University of Maryland)

  • Ariel D. Anbar

    (Arizona State University)

Abstract

Aerobic lifeforms, including humans, thrive because of abundant atmospheric O2, but for much of Earth history O2 levels were low. Even after evidence for oxygenic photosynthesis appeared, the atmosphere remained anoxic for hundreds of millions of years until the ~2.4 Ga Great Oxidation Event. The delay of atmospheric oxygenation and its timing remain poorly understood. Two recent studies reveal that the mantle gradually oxidized from the Archean onwards, leading to speculation that such oxidation enabled atmospheric oxygenation. But whether this mechanism works has not been quantitatively examined. Here, we show that these data imply that reducing Archean volcanic gases could have prevented atmospheric O2 from accumulating until ~2.5 Ga with ≥95% probability. For two decades, mantle oxidation has been dismissed as a key driver of the evolution of O2 and aerobic life. Our findings warrant a reconsideration for Earth and Earth-like exoplanets.

Suggested Citation

  • Shintaro Kadoya & David C. Catling & Robert W. Nicklas & Igor S. Puchtel & Ariel D. Anbar, 2020. "Mantle data imply a decline of oxidizable volcanic gases could have triggered the Great Oxidation," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16493-1
    DOI: 10.1038/s41467-020-16493-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16493-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16493-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Gao & Shuwen Liu & Peter A. Cawood & Fangyang Hu & Jintuan Wang & Guozheng Sun & Yalu Hu, 2022. "Oxidation of Archean upper mantle caused by crustal recycling," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Guoxiong Chen & Qiuming Cheng & Timothy W. Lyons & Jun Shen & Frits Agterberg & Ning Huang & Molei Zhao, 2022. "Reconstructing Earth’s atmospheric oxygenation history using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Austine Ofondu Chinomso Iroegbu & Suprakas Sinha Ray, 2021. "Bamboos: From Bioresource to Sustainable Materials and Chemicals," Sustainability, MDPI, vol. 13(21), pages 1-25, November.
    4. Fangyi Zhang & Vincenzo Stagno & Lipeng Zhang & Chen Chen & Haiyang Liu & Congying Li & Weidong Sun, 2024. "The constant oxidation state of Earth’s mantle since the Hadean," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16493-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.