IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16447-7.html
   My bibliography  Save this article

MYC functions as a switch for natural killer cell-mediated immune surveillance of lymphoid malignancies

Author

Listed:
  • Srividya Swaminathan

    (Stanford University
    Beckman Research Institute of City of Hope)

  • Aida S. Hansen

    (Stanford University)

  • Line D. Heftdal

    (Stanford University)

  • Renumathy Dhanasekaran

    (Stanford University
    Stanford University)

  • Anja Deutzmann

    (Stanford University)

  • Wadie D. M. Fernandez

    (Stanford University)

  • Daniel F. Liefwalker

    (Stanford University)

  • Crista Horton

    (Stanford University)

  • Adriane Mosley

    (Stanford University)

  • Mariola Liebersbach

    (Stanford University)

  • Holden T. Maecker

    (Stanford University School of Medicine)

  • Dean W. Felsher

    (Stanford University)

Abstract

The MYC oncogene drives T- and B- lymphoid malignancies, including Burkitt’s lymphoma (BL) and Acute Lymphoblastic Leukemia (ALL). Here, we demonstrate a systemic reduction in natural killer (NK) cell numbers in SRα-tTA/Tet-O-MYCON mice bearing MYC-driven T-lymphomas. Residual mNK cells in spleens of MYCON T-lymphoma-bearing mice exhibit perturbations in the terminal NK effector differentiation pathway. Lymphoma-intrinsic MYC arrests NK maturation by transcriptionally repressing STAT1/2 and secretion of Type I Interferons (IFNs). Treating T-lymphoma-bearing mice with Type I IFN improves survival by rescuing NK cell maturation. Adoptive transfer of mature NK cells is sufficient to delay both T-lymphoma growth and recurrence post MYC inactivation. In MYC-driven BL patients, low expression of both STAT1 and STAT2 correlates significantly with the absence of activated NK cells and predicts unfavorable clinical outcomes. Our studies thus provide a rationale for developing NK cell-based therapies to effectively treat MYC-driven lymphomas in the future.

Suggested Citation

  • Srividya Swaminathan & Aida S. Hansen & Line D. Heftdal & Renumathy Dhanasekaran & Anja Deutzmann & Wadie D. M. Fernandez & Daniel F. Liefwalker & Crista Horton & Adriane Mosley & Mariola Liebersbach , 2020. "MYC functions as a switch for natural killer cell-mediated immune surveillance of lymphoid malignancies," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16447-7
    DOI: 10.1038/s41467-020-16447-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16447-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16447-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuxiu Xu & Xin Li & Fang Cheng & Bao Zhao & Min Fang & Zihai Li & Songdong Meng, 2024. "Heat shock protein gp96 drives natural killer cell maturation and anti-tumor immunity by counteracting Trim28 to stabilize Eomes," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Anja Deutzmann & Delaney K. Sullivan & Renumathy Dhanasekaran & Wei Li & Xinyu Chen & Ling Tong & Wadie D. Mahauad-Fernandez & John Bell & Adriane Mosley & Angela N. Koehler & Yulin Li & Dean W. Felsh, 2024. "Nuclear to cytoplasmic transport is a druggable dependency in MYC-driven hepatocellular carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Yejinpeng Wang & Lingao Ju & Gang Wang & Kaiyu Qian & Wan Jin & Mingxing Li & Jingtian Yu & Yiliang Shi & Yongzhi Wang & Yi Zhang & Yu Xiao & Xinghuan Wang, 2023. "DNA polymerase POLD1 promotes proliferation and metastasis of bladder cancer by stabilizing MYC," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16447-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.