IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16386-3.html
   My bibliography  Save this article

Parkinson’s disease associated mutation E46K of α-synuclein triggers the formation of a distinct fibril structure

Author

Listed:
  • Kun Zhao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yaowang Li

    (Tsinghua University)

  • Zhenying Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Houfang Long

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Chunyu Zhao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Feng Luo

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yunpeng Sun

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Youqi Tao

    (Shanghai Jiao Tong University)

  • Xiao-dong Su

    (Peking University)

  • Dan Li

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Xueming Li

    (Tsinghua University)

  • Cong Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Amyloid aggregation of α-synuclein (α-syn) is closely associated with Parkinson’s disease (PD) and other synucleinopathies. Several single amino-acid mutations (e.g. E46K) of α-syn have been identified causative to the early onset of familial PD. Here, we report the cryo-EM structure of an α-syn fibril formed by N-terminally acetylated E46K mutant α-syn (Ac-E46K). The fibril structure represents a distinct fold of α-syn, which demonstrates that the E46K mutation breaks the electrostatic interactions in the wild type (WT) α-syn fibril and thus triggers the rearrangement of the overall structure. Furthermore, we show that the Ac-E46K fibril is less resistant to harsh conditions and protease cleavage, and more prone to be fragmented with an enhanced seeding capability than that of the WT fibril. Our work provides a structural view to the severe pathology of the PD familial mutation E46K of α-syn and highlights the importance of electrostatic interactions in defining the fibril polymorphs.

Suggested Citation

  • Kun Zhao & Yaowang Li & Zhenying Liu & Houfang Long & Chunyu Zhao & Feng Luo & Yunpeng Sun & Youqi Tao & Xiao-dong Su & Dan Li & Xueming Li & Cong Liu, 2020. "Parkinson’s disease associated mutation E46K of α-synuclein triggers the formation of a distinct fibril structure," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16386-3
    DOI: 10.1038/s41467-020-16386-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16386-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16386-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhruva D. Dhavale & Alexander M. Barclay & Collin G. Borcik & Katherine Basore & Deborah A. Berthold & Isabelle R. Gordon & Jialu Liu & Moses H. Milchberg & Jennifer Y. O’Shea & Michael J. Rau & Zacha, 2024. "Structure of alpha-synuclein fibrils derived from human Lewy body dementia tissue," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Youqi Tao & Yunpeng Sun & Shiran Lv & Wencheng Xia & Kun Zhao & Qianhui Xu & Qinyue Zhao & Lin He & Weidong Le & Yong Wang & Cong Liu & Dan Li, 2022. "Heparin induces α-synuclein to form new fibril polymorphs with attenuated neuropathology," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16386-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.