IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16267-9.html
   My bibliography  Save this article

Ballistic supercavitating nanoparticles driven by single Gaussian beam optical pushing and pulling forces

Author

Listed:
  • Eungkyu Lee

    (University of Notre Dame)

  • Dezhao Huang

    (University of Notre Dame)

  • Tengfei Luo

    (University of Notre Dame
    University of Notre Dame
    University of Notre Dame)

Abstract

Directed high-speed motion of nanoscale objects in fluids can have a wide range of applications like molecular machinery, nano robotics, and material assembly. Here, we report ballistic plasmonic Au nanoparticle (NP) swimmers with unprecedented speeds (~336,000 μm s−1) realized by not only optical pushing but also pulling forces from a single Gaussian laser beam. Both the optical pulling and high speeds are made possible by a unique NP-laser interaction. The Au NP excited by the laser at the surface plasmon resonance peak can generate a nanoscale bubble, which can encapsulate the NP (i.e., supercavitation) to create a virtually frictionless environment for it to move, like the Leidenfrost effect. Certain NP-in-bubble configurations can lead to the optical pulling of NP against the photon stream. The demonstrated ultra-fast, light-driven NP movement may benefit a wide range of nano- and bio-applications and provide new insights to the field of optical pulling force.

Suggested Citation

  • Eungkyu Lee & Dezhao Huang & Tengfei Luo, 2020. "Ballistic supercavitating nanoparticles driven by single Gaussian beam optical pushing and pulling forces," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16267-9
    DOI: 10.1038/s41467-020-16267-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16267-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16267-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neng Wang & Jack Ng & Guo Ping Wang, 2024. "Morphology-independent general-purpose optical surface tractor beam," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Man Hu & Feng Wang & Li Chen & Peng Huo & Yuqi Li & Xi Gu & Kai Leong Chong & Daosheng Deng, 2022. "Near-infrared-laser-navigated dancing bubble within water via a thermally conductive interface," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16267-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.