IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16233-5.html
   My bibliography  Save this article

Machine-learning-revealed statistics of the particle-carbon/binder detachment in lithium-ion battery cathodes

Author

Listed:
  • Zhisen Jiang

    (SLAC National Accelerator Laboratory)

  • Jizhou Li

    (Stanford University)

  • Yang Yang

    (European Synchrotron Radiation Facility
    Brookhaven National Laboratory)

  • Linqin Mu

    (Virginia Tech)

  • Chenxi Wei

    (SLAC National Accelerator Laboratory)

  • Xiqian Yu

    (Chinese Academy of Sciences)

  • Piero Pianetta

    (SLAC National Accelerator Laboratory)

  • Kejie Zhao

    (Purdue University)

  • Peter Cloetens

    (European Synchrotron Radiation Facility)

  • Feng Lin

    (Virginia Tech)

  • Yijin Liu

    (SLAC National Accelerator Laboratory)

Abstract

The microstructure of a composite electrode determines how individual battery particles are charged and discharged in a lithium-ion battery. It is a frontier challenge to experimentally visualize and, subsequently, to understand the electrochemical consequences of battery particles’ evolving (de)attachment with the conductive matrix. Herein, we tackle this issue with a unique combination of multiscale experimental approaches, machine-learning-assisted statistical analysis, and experiment-informed mathematical modeling. Our results suggest that the degree of particle detachment is positively correlated with the charging rate and that smaller particles exhibit a higher degree of uncertainty in their detachment from the carbon/binder matrix. We further explore the feasibility and limitation of utilizing the reconstructed electron density as a proxy for the state-of-charge. Our findings highlight the importance of precisely quantifying the evolving nature of the battery electrode’s microstructure with statistical confidence, which is a key to maximize the utility of active particles towards higher battery capacity.

Suggested Citation

  • Zhisen Jiang & Jizhou Li & Yang Yang & Linqin Mu & Chenxi Wei & Xiqian Yu & Piero Pianetta & Kejie Zhao & Peter Cloetens & Feng Lin & Yijin Liu, 2020. "Machine-learning-revealed statistics of the particle-carbon/binder detachment in lithium-ion battery cathodes," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16233-5
    DOI: 10.1038/s41467-020-16233-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16233-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16233-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yuekuan, 2024. "AI-driven battery ageing prediction with distributed renewable community and E-mobility energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    2. Li, Alan G. & West, Alan C. & Preindl, Matthias, 2022. "Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review," Applied Energy, Elsevier, vol. 316(C).
    3. Zhichen Xue & Nikhil Sharma & Feixiang Wu & Piero Pianetta & Feng Lin & Luxi Li & Kejie Zhao & Yijin Liu, 2023. "Asynchronous domain dynamics and equilibration in layered oxide battery cathode," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Simon Müller & Christina Sauter & Ramesh Shunmugasundaram & Nils Wenzler & Vincent Andrade & Francesco Carlo & Ender Konukoglu & Vanessa Wood, 2021. "Deep learning-based segmentation of lithium-ion battery microstructures enhanced by artificially generated electrodes," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Quansheng Ge & Mengmeng Hao & Fangyu Ding & Dong Jiang & Jürgen Scheffran & David Helman & Tobias Ide, 2022. "Modelling armed conflict risk under climate change with machine learning and time-series data," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Samuel-Soma Ajibade & Abdelhamid Zaidi & Asamh Saleh M. Al Luhayb & Anthonia Oluwatosin Adediran & Liton Chandra Voumik & Fazle Rabbi, 2023. "New Insights into the Emerging Trends Research of Machine and Deep Learning Applications in Energy Storage: A Bibliometric Analysis and Publication Trends," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 303-314, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16233-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.