IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16176-x.html
   My bibliography  Save this article

Victoria continental microplate dynamics controlled by the lithospheric strength distribution of the East African Rift

Author

Listed:
  • Anne Glerum

    (Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences)

  • Sascha Brune

    (Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences
    University of Potsdam)

  • D. Sarah Stamps

    (Virginia Tech)

  • Manfred R. Strecker

    (University of Potsdam)

Abstract

The Victoria microplate between the Eastern and Western Branches of the East African Rift System is one of the largest continental microplates on Earth. In striking contrast to its neighboring plates, Victoria rotates counterclockwise with respect to Nubia. The underlying cause of this distinctive rotation has remained elusive so far. Using 3D numerical models, we investigate the role of pre-existing lithospheric heterogeneities in continental microplate rotation. We find that Victoria’s rotation is primarily controlled by the distribution of rheologically stronger zones that transmit the drag of the major plates to the microplate and of the mechanically weaker mobile belts surrounding Victoria that facilitate rotation. Our models reproduce Victoria’s GPS-derived counterclockwise rotation as well as key complexities of the regional tectonic stress field. These results reconcile competing ideas on the opening of the rift system by highlighting differences in orientation of the far-field divergence, local extension, and the minimum horizontal stress.

Suggested Citation

  • Anne Glerum & Sascha Brune & D. Sarah Stamps & Manfred R. Strecker, 2020. "Victoria continental microplate dynamics controlled by the lithospheric strength distribution of the East African Rift," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16176-x
    DOI: 10.1038/s41467-020-16176-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16176-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16176-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexis Cartwright-Taylor & Maria-Daphne Mangriotis & Ian G. Main & Ian B. Butler & Florian Fusseis & Martin Ling & Edward Andò & Andrew Curtis & Andrew F. Bell & Alyssa Crippen & Roberto E. Rizzo & Si, 2022. "Seismic events miss important kinematically governed grain scale mechanisms during shear failure of porous rock," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16176-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.