IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16119-6.html
   My bibliography  Save this article

Reaction mechanism and kinetics for CO2 reduction on nickel single atom catalysts from quantum mechanics

Author

Listed:
  • Md Delowar Hossain

    (William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay
    California Institute of Technology)

  • Yufeng Huang

    (California Institute of Technology)

  • Ted H. Yu

    (California Institute of Technology
    California State University)

  • William A. Goddard III

    (California Institute of Technology)

  • Zhengtang Luo

    (William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay)

Abstract

Experiments have shown that graphene-supported Ni-single atom catalysts (Ni-SACs) provide a promising strategy for the electrochemical reduction of CO2 to CO, but the nature of the Ni sites (Ni-N2C2, Ni-N3C1, Ni-N4) in Ni-SACs has not been determined experimentally. Here, we apply the recently developed grand canonical potential kinetics (GCP-K) formulation of quantum mechanics to predict the kinetics as a function of applied potential (U) to determine faradic efficiency, turn over frequency, and Tafel slope for CO and H2 production for all three sites. We predict an onset potential (at 10 mA cm−2) Uonset = −0.84 V (vs. RHE) for Ni-N2C2 site and Uonset = −0.92 V for Ni-N3C1 site in agreement with experiments, and Uonset = −1.03 V for Ni-N4. We predict that the highest current is for Ni-N4, leading to 700 mA cm−2 at U = −1.12 V. To help determine the actual sites in the experiments, we predict the XPS binding energy shift and CO vibrational frequency for each site.

Suggested Citation

  • Md Delowar Hossain & Yufeng Huang & Ted H. Yu & William A. Goddard III & Zhengtang Luo, 2020. "Reaction mechanism and kinetics for CO2 reduction on nickel single atom catalysts from quantum mechanics," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16119-6
    DOI: 10.1038/s41467-020-16119-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16119-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16119-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng Wu & Xiaokang Liu & Shiqi Wang & Longfei Hu & Sebastian Kunze & Zhenggang Xue & Zehao Shen & Yaxiong Yang & Xinqiang Wang & Minghui Fan & Hongge Pan & Xiaoping Gao & Tao Yao & Yuen Wu, 2024. "Identification of K+-determined reaction pathway for facilitated kinetics of CO2 electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Xianxian Qin & Jiejie Li & Tian-Wen Jiang & Xian-Yin Ma & Kun Jiang & Bo Yang & Shengli Chen & Wen-Bin Cai, 2024. "Disentangling heterogeneous thermocatalytic formic acid dehydrogenation from an electrochemical perspective," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Junsic Cho & Taejung Lim & Haesol Kim & Ling Meng & Jinjong Kim & Seunghoon Lee & Jong Hoon Lee & Gwan Yeong Jung & Kug-Seung Lee & Francesc Viñes & Francesc Illas & Kai S. Exner & Sang Hoon Joo & Cha, 2023. "Importance of broken geometric symmetry of single-atom Pt sites for efficient electrocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16119-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.