IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16083-1.html
   My bibliography  Save this article

Yield strength and misfit volumes of NiCoCr and implications for short-range-order

Author

Listed:
  • Binglun Yin

    (École Polytechnique Fédérale de Lausanne)

  • Shuhei Yoshida

    (Kyoto University)

  • Nobuhiro Tsuji

    (Kyoto University
    Kyoto University)

  • W. A. Curtin

    (École Polytechnique Fédérale de Lausanne)

Abstract

The face-centered cubic medium-entropy alloy NiCoCr has received considerable attention for its good mechanical properties, uncertain stacking fault energy, etc, some of which have been attributed to chemical short-range order (SRO). Here, we examine the yield strength and misfit volumes of NiCoCr to determine whether SRO has measurably influenced mechanical properties. Polycrystalline strengths show no systematic trend with different processing conditions. Measured misfit volumes in NiCoCr are consistent with those in random binaries. Yield strength prediction of a random NiCoCr alloy matches well with experiments. Finally, we show that standard spin-polarized density functional theory (DFT) calculations of misfit volumes are not accurate for NiCoCr. This implies that DFT may be inaccurate for other subtle structural quantities such as atom-atom bond distance so that caution is required in drawing conclusions about NiCoCr based on DFT. These findings all lead to the conclusion that, under typical processing conditions, SRO in NiCoCr is either negligible or has no systematic measurable effect on strength.

Suggested Citation

  • Binglun Yin & Shuhei Yoshida & Nobuhiro Tsuji & W. A. Curtin, 2020. "Yield strength and misfit volumes of NiCoCr and implications for short-range-order," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16083-1
    DOI: 10.1038/s41467-020-16083-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16083-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16083-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Wang & Ping Jiang & Fuping Yuan & Xiaolei Wu, 2022. "Chemical medium-range order in a medium-entropy alloy," Nature Communications, Nature, vol. 13(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16083-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.