IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16070-6.html
   My bibliography  Save this article

The NMDA receptor regulates competition of epithelial cells in the Drosophila wing

Author

Listed:
  • Agnes R. Banreti

    (The Institute of Cancer Research
    Université Côte D’Azur, CNRS, Inserm, Institut de Biologie Valrose)

  • Pascal Meier

    (The Institute of Cancer Research)

Abstract

Cell competition is an emerging principle that eliminates suboptimal or potentially dangerous cells. For ‘unfit’ cells to be detected, their competitive status needs to be compared to the collective fitness of cells within a tissue. Here we report that the NMDA receptor controls cell competition of epithelial cells and Myc supercompetitors in the Drosophila wing disc. While clonal depletion of the NMDA receptor subunit NR2 results in their rapid elimination via the TNF/Eiger>JNK signalling pathway, local over-expression of NR2 causes NR2 cells to acquire supercompetitor-like behaviour that enables them to overtake the tissue through clonal expansion that causes, but also relies on, the killing of surrounding cells. Consistently, NR2 is utilised by Myc clones to provide them with supercompetitor status. Mechanistically, we find that the JNK>PDK signalling axis in ‘loser’ cells reprograms their metabolism, driving them to produce and transfer lactate to winners. Preventing lactate transfer from losers to winners abrogates NMDAR-mediated cell competition. Our findings demonstrate a functional repurposing of NMDAR in the surveillance of tissue fitness.

Suggested Citation

  • Agnes R. Banreti & Pascal Meier, 2020. "The NMDA receptor regulates competition of epithelial cells in the Drosophila wing," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16070-6
    DOI: 10.1038/s41467-020-16070-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16070-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16070-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marianna Yusupova & Roi Ankawa & Yahav Yosefzon & David Meiri & Ido Bachelet & Yaron Fuchs, 2023. "Apoptotic dysregulation mediates stem cell competition and tissue regeneration," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Michael E. Baumgartner & Paul F. Langton & Remi Logeay & Alex Mastrogiannopoulos & Anna Nilsson-Takeuchi & Iwo Kucinski & Jules Lavalou & Eugenia Piddini, 2023. "The PECAn image and statistical analysis pipeline identifies Minute cell competition genes and features," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16070-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.