IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16041-x.html
   My bibliography  Save this article

Diversity in medullary thymic epithelial cells controls the activity and availability of iNKT cells

Author

Listed:
  • Beth Lucas

    (University of Birmingham)

  • Andrea J. White

    (University of Birmingham)

  • Emilie J. Cosway

    (University of Birmingham)

  • Sonia M. Parnell

    (University of Birmingham)

  • Kieran D. James

    (University of Birmingham)

  • Nick D. Jones

    (University of Birmingham)

  • Izumi Ohigashi

    (University of Tokushima)

  • Yousuke Takahama

    (National Institutes of Health)

  • William E. Jenkinson

    (University of Birmingham)

  • Graham Anderson

    (University of Birmingham)

Abstract

The thymus supports multiple αβ T cell lineages that are functionally distinct, but mechanisms that control this multifaceted development are poorly understood. Here we examine medullary thymic epithelial cell (mTEC) heterogeneity and its influence on CD1d-restricted iNKT cells. We find three distinct mTEClow subsets distinguished by surface, intracellular and secreted molecules, and identify LTβR as a cell-autonomous controller of their development. Importantly, this mTEC heterogeneity enables the thymus to differentially control iNKT sublineages possessing distinct effector properties. mTEC expression of LTβR is essential for the development thymic tuft cells which regulate NKT2 via IL-25, while LTβR controls CD104+CCL21+ mTEClow that are capable of IL-15-transpresentation for regulating NKT1 and NKT17. Finally, mTECs regulate both iNKT-mediated activation of thymic dendritic cells, and iNKT availability in extrathymic sites. In conclusion, mTEC specialization controls intrathymic iNKT cell development and function, and determines iNKT pool size in peripheral tissues.

Suggested Citation

  • Beth Lucas & Andrea J. White & Emilie J. Cosway & Sonia M. Parnell & Kieran D. James & Nick D. Jones & Izumi Ohigashi & Yousuke Takahama & William E. Jenkinson & Graham Anderson, 2020. "Diversity in medullary thymic epithelial cells controls the activity and availability of iNKT cells," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16041-x
    DOI: 10.1038/s41467-020-16041-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16041-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16041-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabian Klein & Clara Veiga-Villauriz & Anastasiya Börsch & Stefano Maio & Sam Palmer & Fatima Dhalla & Adam E. Handel & Saulius Zuklys & Irene Calvo-Asensio & Lucas Musette & Mary E. Deadman & Andrea , 2023. "Combined multidimensional single-cell protein and RNA profiling dissects the cellular and functional heterogeneity of thymic epithelial cells," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Beth Lucas & Andrea J. White & Fabian Klein & Clara Veiga-Villauriz & Adam Handel & Andrea Bacon & Emilie J. Cosway & Kieran D. James & Sonia M. Parnell & Izumi Ohigashi & Yousuke Takahama & William E, 2023. "Embryonic keratin19+ progenitors generate multiple functionally distinct progeny to maintain epithelial diversity in the adult thymus medulla," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16041-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.