IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15968-5.html
   My bibliography  Save this article

Inferring spatial and signaling relationships between cells from single cell transcriptomic data

Author

Listed:
  • Zixuan Cang

    (University of California, Irvine
    University of California, Irvine)

  • Qing Nie

    (University of California, Irvine
    University of California, Irvine
    University of California, Irvine)

Abstract

Single-cell RNA sequencing (scRNA-seq) provides details for individual cells; however, crucial spatial information is often lost. We present SpaOTsc, a method relying on structured optimal transport to recover spatial properties of scRNA-seq data by utilizing spatial measurements of a relatively small number of genes. A spatial metric for individual cells in scRNA-seq data is first established based on a map connecting it with the spatial measurements. The cell–cell communications are then obtained by “optimally transporting” signal senders to target signal receivers in space. Using partial information decomposition, we next compute the intercellular gene–gene information flow to estimate the spatial regulations between genes across cells. Four datasets are employed for cross-validation of spatial gene expression prediction and comparison to known cell–cell communications. SpaOTsc has broader applications, both in integrating non-spatial single-cell measurements with spatial data, and directly in spatial single-cell transcriptomics data to reconstruct spatial cellular dynamics in tissues.

Suggested Citation

  • Zixuan Cang & Qing Nie, 2020. "Inferring spatial and signaling relationships between cells from single cell transcriptomic data," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15968-5
    DOI: 10.1038/s41467-020-15968-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15968-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15968-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Shao & Chengyu Li & Haihong Yang & Xiaoyan Lu & Jie Liao & Jingyang Qian & Kai Wang & Junyun Cheng & Penghui Yang & Huajun Chen & Xiao Xu & Xiaohui Fan, 2022. "Knowledge-graph-based cell-cell communication inference for spatially resolved transcriptomic data with SpaTalk," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Zhuoxuan Li & Tianjie Wang & Pentao Liu & Yuanhua Huang, 2023. "SpatialDM for rapid identification of spatially co-expressed ligand–receptor and revealing cell–cell communication patterns," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15968-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.