IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15909-2.html
   My bibliography  Save this article

Endogenous and exogenous control of visuospatial selective attention in freely behaving mice

Author

Listed:
  • Wen-Kai You

    (Johns Hopkins University)

  • Shreesh P. Mysore

    (Johns Hopkins University
    Johns Hopkins University)

Abstract

Visuospatial selective attention has been investigated primarily in head-fixed animals and almost exclusively in primates. Here, we develop two human-inspired, discrimination-based behavioral paradigms for studying selective visuospatial attention in freely behaving mice. In the ‘spatial probability’ task, we find enhanced accuracy, sensitivity, and rate of evidence accumulation at the location with higher probability of target occurrence, and opposite effects at the lower probability location. Together with video-based 3D head-tracking, these results demonstrate endogenous expectation-driven shifts of spatial attention. In the ‘flanker’ task, we find that a second stimulus presented with the target, but with conflicting information, causes switch-like decrements in accuracy and sensitivity as a function of its contrast, and slower evidence accumulation, demonstrating exogenous capture of spatial attention. The ability to study primate-like selective attention rigorously in unrestrained mice opens a rich avenue for research into neural circuit mechanisms underlying this critical executive function in a naturalistic setting.

Suggested Citation

  • Wen-Kai You & Shreesh P. Mysore, 2020. "Endogenous and exogenous control of visuospatial selective attention in freely behaving mice," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15909-2
    DOI: 10.1038/s41467-020-15909-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15909-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15909-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15909-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.