IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15801-z.html
   My bibliography  Save this article

Observation of an unpaired photonic Dirac point

Author

Listed:
  • Gui-Geng Liu

    (Nanyang Technological University)

  • Peiheng Zhou

    (University of Electronic Science and Technology of China)

  • Yihao Yang

    (Nanyang Technological University
    Nanyang Technological University)

  • Haoran Xue

    (Nanyang Technological University)

  • Xin Ren

    (University of Electronic Science and Technology of China)

  • Xiao Lin

    (Nanyang Technological University)

  • Hong-xiang Sun

    (Jiangsu University)

  • Lei Bi

    (University of Electronic Science and Technology of China)

  • Yidong Chong

    (Nanyang Technological University
    Nanyang Technological University)

  • Baile Zhang

    (Nanyang Technological University
    Nanyang Technological University)

Abstract

At photonic Dirac points, electromagnetic waves are governed by the same equations as two-component massless relativistic fermions. However, photonic Dirac points are known to occur in pairs in “photonic graphene” and other similar photonic crystals, which necessitates special precautions to excite only one valley state. Systems hosting unpaired photonic Dirac points are significantly harder to realize, as they require broken time-reversal symmetry. Here, we report on the observation of an unpaired Dirac point in a planar two-dimensional photonic crystal. The structure incorporates gyromagnetic materials, which break time-reversal symmetry; the unpaired Dirac point occurs when a parity-breaking parameter is fine-tuned to a topological transition between a photonic Chern insulator and a conventional photonic insulator phase. Evidence for the unpaired Dirac point is provided by transmission and field-mapping experiments, including a demonstration of strongly non-reciprocal reflection. This unpaired Dirac point may have applications in valley filters and angular selective photonic devices.

Suggested Citation

  • Gui-Geng Liu & Peiheng Zhou & Yihao Yang & Haoran Xue & Xin Ren & Xiao Lin & Hong-xiang Sun & Lei Bi & Yidong Chong & Baile Zhang, 2020. "Observation of an unpaired photonic Dirac point," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15801-z
    DOI: 10.1038/s41467-020-15801-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15801-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15801-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang Xi & Bei Yan & Linyun Yang & Yan Meng & Zhen-Xiao Zhu & Jing-Ming Chen & Ziyao Wang & Peiheng Zhou & Perry Ping Shum & Yihao Yang & Hongsheng Chen & Subhaskar Mandal & Gui-Geng Liu & Baile Zhang, 2023. "Topological antichiral surface states in a magnetic Weyl photonic crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Yanan Wang & Hai-Xiao Wang & Li Liang & Weiwei Zhu & Longzhen Fan & Zhi-Kang Lin & Feifei Li & Xiao Zhang & Pi-Gang Luan & Yin Poo & Jian-Hua Jiang & Guang-Yu Guo, 2023. "Hybrid topological photonic crystals," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15801-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.