Author
Listed:
- Kanghwan Kim
(University of Michigan)
- Mihály Vöröslakos
(University of Michigan
Neuroscience Institute, Langone Medical Center, New York University)
- John P. Seymour
(University of Michigan)
- Kensall D. Wise
(University of Michigan)
- György Buzsáki
(Neuroscience Institute, Langone Medical Center, New York University)
- Euisik Yoon
(University of Michigan
University of Michigan
Yonsei University)
Abstract
The combination of in vivo extracellular recording and genetic-engineering-assisted optical stimulation is a powerful tool for the study of neuronal circuits. Precise analysis of complex neural circuits requires high-density integration of multiple cellular-size light sources and recording electrodes. However, high-density integration inevitably introduces stimulation artifact. We present minimal-stimulation-artifact (miniSTAR) μLED optoelectrodes that enable effective elimination of stimulation artifact. A multi-metal-layer structure with a shielding layer effectively suppresses capacitive coupling of stimulation signals. A heavily boron-doped silicon substrate silences the photovoltaic effect induced from LED illumination. With transient stimulation pulse shaping, we reduced stimulation artifact on miniSTAR μLED optoelectrodes to below 50 μVpp, much smaller than a typical spike detection threshold, at optical stimulation of >50 mW mm–2 irradiance. We demonstrated high-temporal resolution (
Suggested Citation
Kanghwan Kim & Mihály Vöröslakos & John P. Seymour & Kensall D. Wise & György Buzsáki & Euisik Yoon, 2020.
"Artifact-free and high-temporal-resolution in vivo opto-electrophysiology with microLED optoelectrodes,"
Nature Communications, Nature, vol. 11(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15769-w
DOI: 10.1038/s41467-020-15769-w
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15769-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.