IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15673-3.html
   My bibliography  Save this article

The role of calcium in regulating marine phosphorus burial and atmospheric oxygenation

Author

Listed:
  • Mingyu Zhao

    (Yale University)

  • Shuang Zhang

    (Yale University)

  • Lidya G. Tarhan

    (Yale University)

  • Christopher T. Reinhard

    (Georgia Institute of Technology)

  • Noah Planavsky

    (Yale University)

Abstract

The marine phosphorus cycle plays a critical role in controlling the extent of global primary productivity and thus atmospheric pO2 on geologic time scales. However, previous attempts to model carbon–phosphorus-oxygen feedbacks have neglected key parameters that could shape the global P cycle. Here we present new diagenetic models to fully parameterize marine P burial. We have also coupled this diagenetic framework to a global carbon cycle model. We find that seawater calcium concentration, by strongly influencing carbonate fluorapatite (CFA) formation, is a key factor controlling global phosphorus cycling, and therefore plays a critical role in shaping the global oxygen cycle. A compilation of Cenozoic deep-sea sedimentary phosphorus speciation data provides empirical support for the idea that CFA formation is strongly influenced by marine Ca concentrations. Therefore, we propose a previously overlooked coupling between Phanerozoic tectonic cycles, the major-element composition of seawater, the marine phosphorus cycle, and atmospheric pO2.

Suggested Citation

  • Mingyu Zhao & Shuang Zhang & Lidya G. Tarhan & Christopher T. Reinhard & Noah Planavsky, 2020. "The role of calcium in regulating marine phosphorus burial and atmospheric oxygenation," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15673-3
    DOI: 10.1038/s41467-020-15673-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15673-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15673-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinzhou Peng & Dengfeng Li & Simon W. Poulton & Gary J. O’Sullivan & David Chew & Yu Fu & Xiaoming Sun, 2024. "Episodic intensification of marine phosphorus burial over the last 80 million years," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15673-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.