IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15668-0.html
   My bibliography  Save this article

Publisher Correction: Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks

Author

Listed:
  • Haixia Zhong

    (Technische Universität Dresden)

  • Mahdi Ghorbani-Asl

    (Institute of Ion Beam Physics and Materials Research)

  • Khoa Hoang Ly

    (Technische Universität Dresden)

  • Jichao Zhang

    (Chinese Academy of Sciences)

  • Jin Ge

    (Institute of Ion Beam Physics and Materials Research)

  • Mingchao Wang

    (Technische Universität Dresden)

  • Zhongquan Liao

    (Fraunhofer Institute for Ceramic Technologies and Systems (IKTS))

  • Denys Makarov

    (Institute of Ion Beam Physics and Materials Research)

  • Ehrenfried Zschech

    (Fraunhofer Institute for Ceramic Technologies and Systems (IKTS))

  • Eike Brunner

    (Technische Universität Dresden)

  • Inez M. Weidinger

    (Technische Universität Dresden)

  • Jian Zhang

    (Technische Universität Dresden
    Northwestern Polytechnical University)

  • Arkady V. Krasheninnikov

    (Institute of Ion Beam Physics and Materials Research
    Aalto University)

  • Stefan Kaskel

    (Technische Universität Dresden)

  • Renhao Dong

    (Technische Universität Dresden)

  • Xinliang Feng

    (Technische Universität Dresden)

Abstract

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

Suggested Citation

  • Haixia Zhong & Mahdi Ghorbani-Asl & Khoa Hoang Ly & Jichao Zhang & Jin Ge & Mingchao Wang & Zhongquan Liao & Denys Makarov & Ehrenfried Zschech & Eike Brunner & Inez M. Weidinger & Jian Zhang & Arkady, 2020. "Publisher Correction: Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15668-0
    DOI: 10.1038/s41467-020-15668-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15668-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15668-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuanhui Huang & Xinglong Shang & Xinyuan Zhou & Zhe Zhang & Xing Huang & Yang Lu & Mingchao Wang & Markus Löffler & Zhongquan Liao & Haoyuan Qi & Ute Kaiser & Dana Schwarz & Andreas Fery & Tie Wang &, 2023. "Hierarchical conductive metal-organic framework films enabling efficient interfacial mass transfer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Nannan Meng & Zhitan Wu & Yanmei Huang & Jie Zhang & Maoxin Chen & Haibin Ma & Hongjiao Li & Shibo Xi & Ming Lin & Wenya Wu & Shuhe Han & Yifu Yu & Quan-Hong Yang & Bin Zhang & Kian Ping Loh, 2024. "High yield electrosynthesis of oxygenates from CO using a relay Cu-Ag co-catalyst system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yu Zhang & Long-Zhang Dong & Shan Li & Xin Huang & Jia-Nan Chang & Jian-Hui Wang & Jie Zhou & Shun-Li Li & Ya-Qian Lan, 2021. "Coordination environment dependent selectivity of single-site-Cu enriched crystalline porous catalysts in CO2 reduction to CH4," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Chen, Zhangsen & Zhang, Gaixia & Chen, Hangrong & Prakash, Jai & Zheng, Yi & Sun, Shuhui, 2022. "Multi-metallic catalysts for the electroreduction of carbon dioxide: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Jiexin Zhu & Jiantao Li & Ruihu Lu & Ruohan Yu & Shiyong Zhao & Chengbo Li & Lei Lv & Lixue Xia & Xingbao Chen & Wenwei Cai & Jiashen Meng & Wei Zhang & Xuelei Pan & Xufeng Hong & Yuhang Dai & Yu Mao , 2023. "Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Yang Lu & Yingying Zhang & Chi-Yuan Yang & Sergio Revuelta & Haoyuan Qi & Chuanhui Huang & Wenlong Jin & Zichao Li & Victor Vega-Mayoral & Yannan Liu & Xing Huang & Darius Pohl & Miroslav Položij & Sh, 2022. "Precise tuning of interlayer electronic coupling in layered conductive metal-organic frameworks," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15668-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.