IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15640-y.html
   My bibliography  Save this article

Chronic activation of hexosamine biosynthesis in the heart triggers pathological cardiac remodeling

Author

Listed:
  • Diem Hong Tran

    (University of Texas Southwestern Medical Center)

  • Herman I. May

    (University of Texas Southwestern Medical Center)

  • Qinfeng Li

    (University of Texas Southwestern Medical Center
    Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University)

  • Xiang Luo

    (University of Texas Southwestern Medical Center)

  • Jian Huang

    (University of Texas Southwestern Medical Center)

  • Guangyu Zhang

    (University of Texas Southwestern Medical Center)

  • Erica Niewold

    (University of Texas Southwestern Medical Center)

  • Xiaoding Wang

    (University of Texas Southwestern Medical Center)

  • Thomas G. Gillette

    (University of Texas Southwestern Medical Center)

  • Yingfeng Deng

    (Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center)

  • Zhao V. Wang

    (University of Texas Southwestern Medical Center)

Abstract

The hexosamine biosynthetic pathway (HBP) plays critical roles in nutrient sensing, stress response, and cell growth. However, its contribution to cardiac hypertrophic growth and heart failure remains incompletely understood. Here, we show that the HBP is induced in cardiomyocytes during hypertrophic growth. Overexpression of Gfat1 (glutamine:fructose-6-phosphate amidotransferase 1), the rate-limiting enzyme of HBP, promotes cardiomyocyte growth. On the other hand, Gfat1 inhibition significantly blunts phenylephrine-induced hypertrophic growth in cultured cardiomyocytes. Moreover, cardiac-specific overexpression of Gfat1 exacerbates pressure overload-induced cardiac hypertrophy, fibrosis, and cardiac dysfunction. Conversely, deletion of Gfat1 in cardiomyocytes attenuates pathological cardiac remodeling in response to pressure overload. Mechanistically, persistent upregulation of the HBP triggers decompensated hypertrophy through activation of mTOR while Gfat1 deficiency shows cardioprotection and a concomitant decrease in mTOR activity. Taken together, our results reveal that chronic upregulation of the HBP under hemodynamic stress induces pathological cardiac hypertrophy and heart failure through persistent activation of mTOR.

Suggested Citation

  • Diem Hong Tran & Herman I. May & Qinfeng Li & Xiang Luo & Jian Huang & Guangyu Zhang & Erica Niewold & Xiaoding Wang & Thomas G. Gillette & Yingfeng Deng & Zhao V. Wang, 2020. "Chronic activation of hexosamine biosynthesis in the heart triggers pathological cardiac remodeling," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15640-y
    DOI: 10.1038/s41467-020-15640-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15640-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15640-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thulaciga Yoganathan & Mailyn Perez-Liva & Daniel Balvay & Morgane Gall & Alice Lallemand & Anais Certain & Gwennhael Autret & Yasmine Mokrani & François Guillonneau & Johanna Bruce & Vincent Nguyen &, 2023. "Acute stress induces long-term metabolic, functional, and structural remodeling of the heart," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Xin Zhang & Can Hu & Zhen-Guo Ma & Min Hu & Xiao-Pin Yuan & Yu-Pei Yuan & Sha-Sha Wang & Chun-Yan Kong & Teng Teng & Qi-Zhu Tang, 2023. "Tisp40 prevents cardiac ischemia/reperfusion injury through the hexosamine biosynthetic pathway in male mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15640-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.