IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15515-2.html
   My bibliography  Save this article

Accelerated dryland expansion regulates future variability in dryland gross primary production

Author

Listed:
  • Jingyu Yao

    (Washington State University
    Lanzhou University)

  • Heping Liu

    (Washington State University)

  • Jianping Huang

    (Lanzhou University
    CAS Center for Excellence in Tibetan Plateau Earth Sciences)

  • Zhongming Gao

    (Washington State University)

  • Guoyin Wang

    (Lanzhou University
    Fudan University)

  • Dan Li

    (Boston University)

  • Haipeng Yu

    (Chinese Academy of Sciences)

  • Xingyuan Chen

    (Pacific Northwest National Laboratory)

Abstract

Drylands cover 41% of Earth’s surface and are the largest source of interannual variability in the global carbon sink. Drylands are projected to experience accelerated expansion over the next century, but the implications of this expansion on variability in gross primary production (GPP) remain elusive. Here we show that by 2100 total dryland GPP will increase by 12 ± 3% relative to the 2000–2014 baseline. Because drylands will largely expand into formerly productive ecosystems, this increase in dryland GPP may not increase global GPP. Further, GPP per unit dryland area will decrease as degradation of historical drylands outpaces the higher GPP of expanded drylands. Dryland expansion and climate-induced conversions among sub-humid, semi-arid, arid, and hyper-arid subtypes will lead to substantial changes in regional and subtype contributions to global dryland GPP variability. Our results highlight the vulnerability of dryland subtypes to more frequent and severe climate extremes and suggest that regional variations will require different mitigation strategies.

Suggested Citation

  • Jingyu Yao & Heping Liu & Jianping Huang & Zhongming Gao & Guoyin Wang & Dan Li & Haipeng Yu & Xingyuan Chen, 2020. "Accelerated dryland expansion regulates future variability in dryland gross primary production," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15515-2
    DOI: 10.1038/s41467-020-15515-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15515-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15515-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenwen Guo & Shengzhi Huang & Yong Zhao & Guoyong Leng & Xianggui Zhao & Pei Li & Mingqiu Nie & Qiang Huang, 2023. "Quantifying the effects of nonlinear trends of meteorological factors on drought dynamics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2505-2526, July.
    2. Virginia Anne Kowal & Julian Ahlborn & Chantsallkham Jamsranjav & Otgonsuren Avirmed & Rebecca Chaplin-Kramer, 2021. "Modeling Integrated Impacts of Climate Change and Grazing on Mongolia’s Rangelands," Land, MDPI, vol. 10(4), pages 1-28, April.
    3. Ma, Shuai & Wang, Liang-Jie & Chu, Lei & Jiang, Jiang, 2023. "Determination of ecological restoration patterns based on water security and food security in arid regions," Agricultural Water Management, Elsevier, vol. 278(C).
    4. Yong Zhang & Chengbang An & Luyu Liu & Yanzhen Zhang & Chao Lu & Wensheng Zhang, 2021. "High Mountains Becoming Wetter While Deserts Getting Drier in Xinjiang, China since the 1980s," Land, MDPI, vol. 10(11), pages 1-14, October.
    5. Yu Peng & Hubert Hirwa & Qiuying Zhang & Guoqin Wang & Fadong Li, 2021. "Dryland Food Security in Ethiopia: Current Status, Opportunities, and a Roadmap for the Future," Sustainability, MDPI, vol. 13(11), pages 1-10, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15515-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.