IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15439-x.html
   My bibliography  Save this article

Task-induced attention load guides and gates unconscious semantic interference

Author

Listed:
  • Shao-Min Hung

    (California Institute of Technology
    Huntington Medical Research Institutes)

  • Daw-An Wu

    (California Institute of Technology)

  • Shinsuke Shimojo

    (California Institute of Technology
    California Institute of Technology)

Abstract

The tight relationship between attention and conscious perception has been extensively researched in the past decades. However, whether attentional modulation extended to unconscious processes remained largely unknown, particularly when it came to abstract and high-level processing. Here we use a double Stroop paradigm to demonstrate that attention load gates unconscious semantic processing. We find that word and color incongruencies between a subliminal prime and a supraliminal target cause slower responses to non-Stroop target words—but only if the task is to name the target word (low-load task), and not if the task is to name the target’s color (high-load task). The task load hypothesis is confirmed by showing that the word-induced incongruence effect can be detected in the color-naming task, but only in the late, practiced trials. We further replicate this task-induced attentional modulation phenomenon in separate experiments with colorless words (word-only) and words with semantic relationship but no orthographic similarities (semantics-only).

Suggested Citation

  • Shao-Min Hung & Daw-An Wu & Shinsuke Shimojo, 2020. "Task-induced attention load guides and gates unconscious semantic interference," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15439-x
    DOI: 10.1038/s41467-020-15439-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15439-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15439-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15439-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.