IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15300-1.html
   My bibliography  Save this article

Imaging small molecule-induced endosomal escape of siRNA

Author

Listed:
  • Hampus Rietz

    (Lund University
    Wallenberg Center for Molecular Medicine)

  • Hampus Hedlund

    (Lund University
    Wallenberg Center for Molecular Medicine)

  • Sten Wilhelmson

    (Lund University
    Wallenberg Center for Molecular Medicine
    Skane University Hospital)

  • Pontus Nordenfelt

    (Lund University)

  • Anders Wittrup

    (Lund University
    Wallenberg Center for Molecular Medicine
    Skane University Hospital)

Abstract

Small interfering RNAs (siRNAs) are a new class of promising therapeutic molecules that can be used for sequence-specific downregulation of disease-causing genes. However, endosomal entrapment of siRNA is a key hurdle for most delivery strategies, limiting the therapeutic effect. Here, we use live-cell microscopy and cytosolic galectin-9 as a sensor of membrane damage, to probe fundamental properties of endosomal escape of cholesterol-conjugated siRNA induced by endosome-disrupting compounds. We demonstrate efficient release of ligand-conjugated siRNA from vesicles damaged by small molecules, enhancing target knockdown up to ∼47-fold in tumor cells. Still, mismatch between siRNA-containing and drug-targeted endolysosomal compartments limits siRNA activity improvement. We also show widespread endosomal damage in macroscopic tumor spheroids after small molecule treatment, substantially improving siRNA delivery and knockdown throughout the spheroid. We believe the strategy to characterize endosomal escape presented here will be widely applicable, facilitating efforts to improve delivery of siRNA and other nucleic acid-based therapeutics.

Suggested Citation

  • Hampus Rietz & Hampus Hedlund & Sten Wilhelmson & Pontus Nordenfelt & Anders Wittrup, 2020. "Imaging small molecule-induced endosomal escape of siRNA," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15300-1
    DOI: 10.1038/s41467-020-15300-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15300-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15300-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catarina Rebelo & Tiago Reis & Joana Guedes & Cláudia Saraiva & Artur Filipe Rodrigues & Susana Simões & Liliana Bernardino & João Peça & Sónia L. C. Pinho & Lino Ferreira, 2022. "Efficient spatially targeted gene editing using a near-infrared activatable protein-conjugated nanoparticle for brain applications," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15300-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.