IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15257-1.html
   My bibliography  Save this article

Ca2+-Daptomycin targets cell wall biosynthesis by forming a tripartite complex with undecaprenyl-coupled intermediates and membrane lipids

Author

Listed:
  • Fabian Grein

    (University of Bonn
    German Center for Infection Research (DZIF), partner site Bonn-Cologne)

  • Anna Müller

    (University of Bonn)

  • Katharina M. Scherer

    (University of Bonn)

  • Xinliang Liu

    (University of Bonn)

  • Kevin C. Ludwig

    (University of Bonn)

  • Anna Klöckner

    (University of Bonn
    German Center for Infection Research (DZIF), partner site Bonn-Cologne)

  • Manuel Strach

    (University of Bonn)

  • Hans-Georg Sahl

    (University of Bonn)

  • Ulrich Kubitscheck

    (University of Bonn)

  • Tanja Schneider

    (University of Bonn
    German Center for Infection Research (DZIF), partner site Bonn-Cologne)

Abstract

The lipopeptide daptomycin is used as an antibiotic to treat severe infections with gram-positive pathogens, such as methicillin resistant Staphylococcus aureus (MRSA) and drug-resistant enterococci. Its precise mechanism of action is incompletely understood, and a specific molecular target has not been identified. Here we show that Ca2+-daptomycin specifically interacts with undecaprenyl-coupled cell envelope precursors in the presence of the anionic phospholipid phosphatidylglycerol, forming a tripartite complex. We use microbiological and biochemical assays, in combination with fluorescence and optical sectioning microscopy of intact staphylococcal cells and model membrane systems. Binding primarily occurs at the staphylococcal septum and interrupts cell wall biosynthesis. This is followed by delocalisation of components of the peptidoglycan biosynthesis machinery and massive membrane rearrangements, which may account for the pleiotropic cellular events previously reported. The identification of carrier-bound cell wall precursors as specific targets explains the specificity of daptomycin for bacterial cells. Our work reconciles apparently inconsistent previous results, and supports a concise model for the mode of action of daptomycin.

Suggested Citation

  • Fabian Grein & Anna Müller & Katharina M. Scherer & Xinliang Liu & Kevin C. Ludwig & Anna Klöckner & Manuel Strach & Hans-Georg Sahl & Ulrich Kubitscheck & Tanja Schneider, 2020. "Ca2+-Daptomycin targets cell wall biosynthesis by forming a tripartite complex with undecaprenyl-coupled intermediates and membrane lipids," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15257-1
    DOI: 10.1038/s41467-020-15257-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15257-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15257-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elizabeth V. K. Ledger & Stéphane Mesnage & Andrew M. Edwards, 2022. "Human serum triggers antibiotic tolerance in Staphylococcus aureus," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Martin F. Peter & Jan A. Ruland & Peer Depping & Niels Schneberger & Emmanuele Severi & Jonas Moecking & Karl Gatterdam & Sarah Tindall & Alexandre Durand & Veronika Heinz & Jan Peter Siebrasse & Paul, 2022. "Structural and mechanistic analysis of a tripartite ATP-independent periplasmic TRAP transporter," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Martin F. Peter & Jan A. Ruland & Yeojin Kim & Philipp Hendricks & Niels Schneberger & Jan Peter Siebrasse & Gavin H. Thomas & Ulrich Kubitscheck & Gregor Hagelueken, 2024. "Conformational coupling of the sialic acid TRAP transporter HiSiaQM with its substrate binding protein HiSiaP," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15257-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.