IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15170-7.html
   My bibliography  Save this article

FAM111A protects replication forks from protein obstacles via its trypsin-like domain

Author

Listed:
  • Yusuke Kojima

    (Mayo Clinic)

  • Yuka Machida

    (Mayo Clinic)

  • Sowmiya Palani

    (Mayo Clinic)

  • Thomas R. Caulfield

    (Mayo Clinic)

  • Evette S. Radisky

    (Mayo Clinic)

  • Scott H. Kaufmann

    (Mayo Clinic
    Mayo Clinic)

  • Yuichi J. Machida

    (Mayo Clinic
    Mayo Clinic)

Abstract

Persistent protein obstacles on genomic DNA, such as DNA-protein crosslinks (DPCs) and tight nucleoprotein complexes, can block replication forks. DPCs can be removed by the proteolytic activities of the metalloprotease SPRTN or the proteasome in a replication-coupled manner; however, additional proteolytic mechanisms may exist to cope with the diversity of protein obstacles. Here, we show that FAM111A, a PCNA-interacting protein, plays an important role in mitigating the effect of protein obstacles on replication forks. This function of FAM111A requires an intact trypsin-like protease domain, the PCNA interaction, and the DNA-binding domain that is necessary for protease activity in vivo. FAM111A, but not SPRTN, protects replication forks from stalling at poly(ADP-ribose) polymerase 1 (PARP1)-DNA complexes trapped by PARP inhibitors, thereby promoting cell survival after drug treatment. Altogether, our findings reveal a role of FAM111A in overcoming protein obstacles to replication forks, shedding light on cellular responses to anti-cancer therapies.

Suggested Citation

  • Yusuke Kojima & Yuka Machida & Sowmiya Palani & Thomas R. Caulfield & Evette S. Radisky & Scott H. Kaufmann & Yuichi J. Machida, 2020. "FAM111A protects replication forks from protein obstacles via its trypsin-like domain," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15170-7
    DOI: 10.1038/s41467-020-15170-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15170-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15170-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yilun Sun & Simone A. Baechler & Xiaohu Zhang & Suresh Kumar & Valentina M. Factor & Yasuhiro Arakawa & Cindy H. Chau & Kanako Okamoto & Anup Parikh & Bob Walker & Yijun P. Su & Jiji Chen & Tabitha Ti, 2023. "Targeting neddylation sensitizes colorectal cancer to topoisomerase I inhibitors by inactivating the DCAF13-CRL4 ubiquitin ligase complex," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Liton Kumar Saha & Sourav Saha & Xi Yang & Shar-yin Naomi Huang & Yilun Sun & Ukhyun Jo & Yves Pommier, 2023. "Replication-associated formation and repair of human topoisomerase IIIα cleavage complexes," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Sowmiya Palani & Yuka Machida & Julia R. Alvey & Vandana Mishra & Allison L. Welter & Gaofeng Cui & Benoît Bragantini & Maria Victoria Botuyan & Anh T. Q. Cong & Georges Mer & Matthew J. Schellenberg , 2024. "Dimerization-dependent serine protease activity of FAM111A prevents replication fork stalling at topoisomerase 1 cleavage complexes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15170-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.