IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15129-8.html
   My bibliography  Save this article

Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity

Author

Listed:
  • Christina A. Roemeling

    (Mayo Clinic
    Mayo Clinic
    University of Florida)

  • Yifan Wang

    (The University of Texas Southwestern Medical Center)

  • Yaqing Qie

    (Mayo Clinic
    The University of Texas MD Anderson Cancer Center)

  • Hengfeng Yuan

    (Mayo Clinic
    Fudan University)

  • Hai Zhao

    (The University of Texas MD Anderson Cancer Center)

  • Xiujie Liu

    (Mayo Clinic)

  • Zhaogang Yang

    (The University of Texas Southwestern Medical Center)

  • Mingming Yang

    (The University of Texas Southwestern Medical Center)

  • Weiye Deng

    (The University of Texas Southwestern Medical Center)

  • Katelyn A. Bruno

    (Mayo Clinic)

  • Charles K. Chan

    (Stanford University)

  • Andrew S. Lee

    (Stanford School of Medicine
    Peking University Shenzhen)

  • Stephen S. Rosenfeld

    (Mayo Clinic)

  • Kyuson Yun

    (Houston Methodist Research Institute)

  • Aaron J. Johnson

    (Mayo Clinic)

  • Duane A. Mitchell

    (University of Florida)

  • Wen Jiang

    (The University of Texas Southwestern Medical Center)

  • Betty Y. S. Kim

    (Mayo Clinic
    The University of Texas MD Anderson Cancer Center)

Abstract

Tumour cell phagocytosis by antigen presenting cells (APCs) is critical to the generation of antitumour immunity. However, cancer cells can evade phagocytosis by upregulating anti-phagocytosis molecule CD47. Here, we show that CD47 blockade alone is inefficient in stimulating glioma cell phagocytosis. However, combining CD47 blockade with temozolomide results in a significant pro-phagocytosis effect due to the latter’s ability to induce endoplasmic reticulum stress response. Increased tumour cell phagocytosis subsequently enhances antigen cross-presentation and activation of cyclic GMP-AMP synthase–stimulator of interferon genes (cGAS–STING) in APCs, resulting in more efficient T cell priming. This bridging of innate and adaptive responses inhibits glioma growth, but also activates immune checkpoint. Sequential administration of an anti-PD1 antibody overcomes this potential adaptive resistance. Together, these findings reveal a dynamic relationship between innate and adaptive immune regulation in tumours and support further investigation of phagocytosis modulation as a strategy to enhance cancer immunotherapy responses.

Suggested Citation

  • Christina A. Roemeling & Yifan Wang & Yaqing Qie & Hengfeng Yuan & Hai Zhao & Xiujie Liu & Zhaogang Yang & Mingming Yang & Weiye Deng & Katelyn A. Bruno & Charles K. Chan & Andrew S. Lee & Stephen S. , 2020. "Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15129-8
    DOI: 10.1038/s41467-020-15129-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15129-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15129-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zenan Wang & Binghao Li & Shan Li & Wenlong Lin & Zhan Wang & Shengdong Wang & Weida Chen & Wei Shi & Tao Chen & Hao Zhou & Eloy Yinwang & Wenkan Zhang & Haochen Mou & Xupeng Chai & Jiahao Zhang & Zhi, 2022. "Metabolic control of CD47 expression through LAT2-mediated amino acid uptake promotes tumor immune evasion," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Shiqun Wang & Wei Yan & Lingkai Kong & Shuguang Zuo & Jingyi Wu & Chunxiao Zhu & Huaping Huang & Bohao He & Jie Dong & Jiwu Wei, 2023. "Oncolytic viruses engineered to enforce cholesterol efflux restore tumor-associated macrophage phagocytosis and anti-tumor immunity in glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    3. Peng Zhang & Aida Rashidi & Junfei Zhao & Caylee Silvers & Hanxiang Wang & Brandyn Castro & Abby Ellingwood & Yu Han & Aurora Lopez-Rosas & Markella Zannikou & Crismita Dmello & Rebecca Levine & Ting , 2023. "STING agonist-loaded, CD47/PD-L1-targeting nanoparticles potentiate antitumor immunity and radiotherapy for glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15129-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.