IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15039-9.html
   My bibliography  Save this article

The electronic structure of benzene from a tiling of the correlated 126-dimensional wavefunction

Author

Listed:
  • Yu Liu

    (UNSW Sydney)

  • Phil Kilby

    (Data 61)

  • Terry J. Frankcombe

    (UNSW Canberra)

  • Timothy W. Schmidt

    (UNSW Sydney)

Abstract

The electronic structure of benzene is a battleground for competing viewpoints of electronic structure, with valence bond theory localising electrons within superimposed resonance structures, and molecular orbital theory describing delocalised electrons. But, the interpretation of electronic structure in terms of orbitals ignores that the wavefunction is anti-symmetric upon interchange of like-spins. Furthermore, molecular orbitals do not provide an intuitive description of electron correlation. Here we show that the 126-dimensional electronic wavefunction of benzene can be partitioned into tiles related by permutation of like-spins. Employing correlated wavefunctions, these tiles are projected onto the three dimensions of each electron to reveal the superposition of Kekulé structures. But, opposing spins favour the occupancy of alternate Kekulé structures. This result succinctly describes the principal effect of electron correlation in benzene and underlines that electrons will not be spatially paired when it is energetically advantageous to avoid one another.

Suggested Citation

  • Yu Liu & Phil Kilby & Terry J. Frankcombe & Timothy W. Schmidt, 2020. "The electronic structure of benzene from a tiling of the correlated 126-dimensional wavefunction," Nature Communications, Nature, vol. 11(1), pages 1-5, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15039-9
    DOI: 10.1038/s41467-020-15039-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15039-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15039-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiluo Ren & Weizhong Fu & Xiaojie Wu & Ji Chen, 2023. "Towards the ground state of molecules via diffusion Monte Carlo on neural networks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Jingyu Chen & Wenjie Zhang & Wenzhi Yang & Fengcheng Xi & Hongyi He & Minghao Liang & Qian Dong & Jiawang Hou & Mengbin Wang & Guocan Yu & Jiong Zhou, 2024. "Separation of benzene and toluene associated with vapochromic behaviors by hybrid[4]arene-based co-crystals," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15039-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.