IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15025-1.html
   My bibliography  Save this article

TIGIT limits immune pathology during viral infections

Author

Listed:
  • Michelle Schorer

    (University of Zurich)

  • Nikolas Rakebrandt

    (University of Zurich)

  • Katharina Lambert

    (University of Zurich)

  • Annika Hunziker

    (University of Zurich)

  • Katharina Pallmer

    (Institute of Microbiology, ETH Zurich)

  • Annette Oxenius

    (Institute of Microbiology, ETH Zurich)

  • Anja Kipar

    (University of Zurich)

  • Silke Stertz

    (University of Zurich)

  • Nicole Joller

    (University of Zurich)

Abstract

Co-inhibitory pathways have a fundamental function in regulating T cell responses and control the balance between promoting efficient effector functions and restricting immune pathology. The TIGIT pathway has been implicated in promoting T cell dysfunction in chronic viral infection. Importantly, TIGIT signaling is functionally linked to IL-10 expression, which has an effect on both virus control and maintenance of tissue homeostasis. However, whether TIGIT has a function in viral persistence or limiting tissue pathology is unclear. Here we report that TIGIT modulation effectively alters the phenotype and cytokine profile of T cells during influenza and chronic LCMV infection, but does not affect virus control in vivo. Instead, TIGIT has an important effect in limiting immune pathology in peripheral organs by inducing IL-10. Our data therefore identify a function of TIGIT in limiting immune pathology that is independent of viral clearance.

Suggested Citation

  • Michelle Schorer & Nikolas Rakebrandt & Katharina Lambert & Annika Hunziker & Katharina Pallmer & Annette Oxenius & Anja Kipar & Silke Stertz & Nicole Joller, 2020. "TIGIT limits immune pathology during viral infections," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15025-1
    DOI: 10.1038/s41467-020-15025-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15025-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15025-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Liechti & Yaser Iftikhar & Massimo Mangino & Margaret Beddall & Charles W. Goss & Jane A. O’Halloran & Philip A. Mudd & Mario Roederer, 2022. "Immune phenotypes that are associated with subsequent COVID-19 severity inferred from post-recovery samples," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Yoav Charpak-Amikam & Tom Lapidus & Batya Isaacson & Alexandra Duev-Cohen & Tal Levinson & Adi Elbaz & Francesca Levi-Schaffer & Nir Osherov & Gilad Bachrach & Lois L. Hoyer & Maya Korem & Ronen Ben-A, 2022. "Candida albicans evades NK cell elimination via binding of Agglutinin-Like Sequence proteins to the checkpoint receptor TIGIT," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15025-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.