IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15009-1.html
   My bibliography  Save this article

Structural basis of ligand binding modes at the human formyl peptide receptor 2

Author

Listed:
  • Tong Chen

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Muya Xiong

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xin Zong

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yunjun Ge

    (University of Macau)

  • Hui Zhang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Mu Wang

    (Chinese Academy of Sciences
    ShanghaiTech University)

  • Gye Won Han

    (University of Southern California)

  • Cuiying Yi

    (Chinese Academy of Sciences)

  • Limin Ma

    (Chinese Academy of Sciences)

  • Richard D. Ye

    (The Chinese University of Hong Kong)

  • Yechun Xu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Qiang Zhao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Beili Wu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    ShanghaiTech University)

Abstract

The human formyl peptide receptor 2 (FPR2) plays a crucial role in host defense and inflammation, and has been considered as a drug target for chronic inflammatory diseases. A variety of peptides with different structures and origins have been characterized as FPR2 ligands. However, the ligand-binding modes of FPR2 remain elusive, thereby limiting the development of potential drugs. Here we report the crystal structure of FPR2 bound to the potent peptide agonist WKYMVm at 2.8 Å resolution. The structure adopts an active conformation and exhibits a deep ligand-binding pocket. Combined with mutagenesis, ligand binding and signaling studies, key interactions between the agonist and FPR2 that govern ligand recognition and receptor activation are identified. Furthermore, molecular docking and functional assays reveal key factors that may define binding affinity and agonist potency of formyl peptides. These findings deepen our understanding about ligand recognition and selectivity mechanisms of the formyl peptide receptor family.

Suggested Citation

  • Tong Chen & Muya Xiong & Xin Zong & Yunjun Ge & Hui Zhang & Mu Wang & Gye Won Han & Cuiying Yi & Limin Ma & Richard D. Ye & Yechun Xu & Qiang Zhao & Beili Wu, 2020. "Structural basis of ligand binding modes at the human formyl peptide receptor 2," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15009-1
    DOI: 10.1038/s41467-020-15009-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15009-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15009-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenli Zhao & Wenru Zhang & Mu Wang & Minmin Lu & Shutian Chen & Tingting Tang & Gisela Schnapp & Holger Wagner & Albert Brennauer & Cuiying Yi & Xiaojing Chu & Shuo Han & Beili Wu & Qiang Zhao, 2022. "Ligand recognition and activation of neuromedin U receptor 2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Geng Chen & Xiankun Wang & Qiwen Liao & Yunjun Ge & Haizhan Jiao & Qiang Chen & Yezhou Liu & Wenping Lyu & Lizhe Zhu & Gydo C. P. Zundert & Michael J. Robertson & Georgios Skiniotis & Yang Du & Hongli, 2022. "Structural basis for recognition of N-formyl peptides as pathogen-associated molecular patterns," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Ya Zhu & Xiaowen Lin & Xin Zong & Shuo Han & Mu Wang & Yuxuan Su & Limin Ma & Xiaojing Chu & Cuiying Yi & Qiang Zhao & Beili Wu, 2022. "Structural basis of FPR2 in recognition of Aβ42 and neuroprotection by humanin," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Jennifer A. E. Payne & Julien Tailhades & Felix Ellett & Xenia Kostoulias & Alex J. Fulcher & Ting Fu & Ryan Leung & Stephanie Louch & Amy Tran & Severin A. Weber & Ralf B. Schittenhelm & Graham J. Li, 2021. "Antibiotic-chemoattractants enhance neutrophil clearance of Staphylococcus aureus," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    5. Youwen Zhuang & Lei Wang & Jia Guo & Dapeng Sun & Yue Wang & Weiyi Liu & H. Eric Xu & Cheng Zhang, 2022. "Molecular recognition of formylpeptides and diverse agonists by the formylpeptide receptors FPR1 and FPR2," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15009-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.